Neuronale en hormonale regulatie
hoorcollege
Hoorcollege 1: introductie
Homeostase:
- Het onderhouden van het interne milieu ondanks veranderingen in het externe milieu
- Twee homeostatische controlecentra:
Zenuwstelsel (centraal en perifeer)
Endocriene systeem (hormoonproducerende organen)
2 manieren van signaaloverdracht:
- Elektrische signalen via zenuwcellen (neurotransmitters en synapsen)
- Hormonen via de bloedbaan
Veel actuele gezondheidswetenschappelijke problematiek vindt zijn oorzaak in het zenuwstelsel
of in het endocriene systeem
- Psychiatrische en neuronale aandoeningen (ADHD, schizofrenie)
- Hormonale aandoeningen (diabetes, vruchtbaarheidsaandoeningen)
- Gecombineerde oorzaak
,Hoorcollege 2: neuronale communicatie
Zenuwcel is een gepolariseerde cel (uitlopers)
- Axon wordt gebruikt om signalen door te geven (maakt contact met andere cellen)
- Dendrieten ontvangen signalen
Op de dendrieten zitten uitstulpsels: dendritische spines → contactplaatsen met de
axonale boutons
- De contactplaatsen tussen axonale boutons en dendritische spines heten synapsen
- Doorgeven signaal via neurotransmitters
- Alle zenuwcellen hebben maar 1 axon
Klassen van zenuwcellen:
- Aantal uitlopers/neurieten
Unipolair (alleen een axon of dendriet), bipolair (1 axon, 1 dendriet), multipolair
Unipolaire cellen hebben 1 uitloper (maar deze kan splitsen in een ontvangende en
doorgevende kant) → wordt ook wel een pseudo unipolaire cel genoemd
Door het cellichaam gaan de signalen heel lastig: bij unipolaire cellen zit het cellichaam
buiten de route zodat het signaal snel kan worden doorgegeven (bijv. pijnneuronen)
- Vorm van dendrieten/boom van dendrieten
Pyramide cellen, stellate cellen, Purkinje cellen
- Lengte van het axon
Projectie neuronen, interneuronen (korte
neuronen, ook wel schakelneuronen)
- Functie
Afferente neuronen (bijv. sensorische
neuronen, signaal naar hersenen),
efferente neuronen (bijv. motor
neuronen, signaal van hersenen)
- Transmitter secretie
Glutamatergisch, dopiminergisch,
cholinergisch etc.
Langste axon:
Grote pootzenuw: axon van 1 meter lang
(ongeveer)
Takje nervus vagus die larynx innerveert loopt
om de aorta heen → deze zenuw is bij dieren
met een lange nek heel lang
,Menselijk brein bevat ongeveer 3-5 x 1011 (300 – 500 miljard neuronen)
- 1,6 x 1011 in de cerebrale cortex
- 1011 kleine granule cellen in het cerebellum
- We kunnen geen zenuwcellen aanmaken
Er zijn 10 keer meer gliacellen in het brein → hebben een ondersteunende functie (zeer
belangrijk)
- Gliacel type 1: oligodendrociet
Hebben uitlopers waarmee ze een isolerend laagje
maken rondom axonen → isoleren elektrisch signaal van
omgeving
Alleen in het centrale zenuwstelsel (hersenen +
ruggenmerg)
o In perifere zenuwstelsel zorgen de cellen van
Schwann voor myeline (zorgen allemaal voor een
klein stukje myeline)
- Gliacel type 2: astrocyten
Hebben uitlopers waarmee ze in het brein de bloedvaten bedekken → sluiten
bloedvaten af van de hersenen (dit heet de bloed-hersenbarrière)
Maken contact met zenuwcellen (met name synapsen) → kunnen de manier waarop
zenuwcellen met elkaar praten beïnvloeden
- Gliacel type 3: microgliacel
Vormen het immuunsysteem van de hersenen, worden niet in de hersenen gemaakt
Multipele scelerose: ontsteking van myeline → signaal kan niet goed worden doorgegeven
Neuronen zijn exciteerbare cellen:
- Exciteerbare cellen kunnen actiepotentialen genereren
- Actiepotentialen zijn snel en korte omkering in membraan
potentiaal die actief verspreiden over het celoppervlak →
door middel van verplaatsen van geladen deeltjes
Intracellulaire opnames:
- We maken contact met de binnenkant van de cel via een elektrode, hierbij kan je ook
gebruik maken van een referentie-elektrode aan de buitenkant van de cel
- Er is wel een vergroter voor nodig
, 3 verschillende type signalen:
- Rustpotentiaal: spanningsverschil over de celmembraan
wanneer het neuron in rust is (er is een vast
spanningsverschil van ongeveer -70 mV)
Hoe wordt het in stand gehouden?
o Kalium is positief geladen en cel bevat
kaliumkanalen (meeste kalium zit aan de
binnenkant van de cel) → kaliumkanaal is passief
en staat altijd open (kalium van binnen naar buiten, want concentratiegradiënt)
o Buitenkant van de cel: Na+ en Cl-
o Eiwitten hebben een negatieve lading in de cel (kunnen neuronen weinig mee)
o Elektrostatische kracht: voorkomt dat kalium naar buiten wil door een positieve
lading van de kalium ionen die zich al buiten de cel bevinden
- Gegradeerde potentiaal: kleine afwijking van de rustmembraanpotentiaal → betekent
nog niks voor de cel
- Actiepotentiaal: gegradeerde potentiaal kan leiden tot de actiepotentiaal → wordt
gebruikt om mee te communiceren, kunnen zich verplaatsen naar het uiteinde van het
axon (op het moment dat dit gebeurt worden neurotransmitters vrijgegeven)
Hoe wordt het in stand gehouden?
- Kalium is positief geladen en cel bevat kaliumkanalen
(meeste kalium zit aan de binnenkant van de cel) →
kaliumkanaal is passief en staat altijd open (kalium
van binnen naar buiten, want concentratiegradiënt)
o Elektrostatische kracht: voorkomt dat kalium
naar buiten wil door een positieve lading van
de kalium ionen die zich al buiten de cel
bevinden
o Evenwichtspotentiaal voor Kalium = -90 mV
o Elektrostatische kracht en diffusie kracht zijn constant in strijd met elkaar
- Eiwitten hebben een negatieve lading in de cel (kunnen neuronen weinig mee)
- Buitenkant van de cel: Na+ en Cl-
- Ook passief kanaal voor natrium
- De gecombineerde evenwichtspotentiaal voor kalium en natrium komt uit op -70 mV
- Zenuwcellen hebben ook een natrium-kalium pomp: deze pompt actief te veel naar
buiten gestroomde kalium naar binnen en te veel naar binnen gestroomde natrium naar
buiten
o Deze pomp is essentieel om de rustpotentiaal op peil te houden
o Voor ieder molecuul ATP gaan 2 kaliumionen naar binnen en 3 natriumionen
naar buiten
o Hersenen gebruiken de meeste ATP
hoorcollege
Hoorcollege 1: introductie
Homeostase:
- Het onderhouden van het interne milieu ondanks veranderingen in het externe milieu
- Twee homeostatische controlecentra:
Zenuwstelsel (centraal en perifeer)
Endocriene systeem (hormoonproducerende organen)
2 manieren van signaaloverdracht:
- Elektrische signalen via zenuwcellen (neurotransmitters en synapsen)
- Hormonen via de bloedbaan
Veel actuele gezondheidswetenschappelijke problematiek vindt zijn oorzaak in het zenuwstelsel
of in het endocriene systeem
- Psychiatrische en neuronale aandoeningen (ADHD, schizofrenie)
- Hormonale aandoeningen (diabetes, vruchtbaarheidsaandoeningen)
- Gecombineerde oorzaak
,Hoorcollege 2: neuronale communicatie
Zenuwcel is een gepolariseerde cel (uitlopers)
- Axon wordt gebruikt om signalen door te geven (maakt contact met andere cellen)
- Dendrieten ontvangen signalen
Op de dendrieten zitten uitstulpsels: dendritische spines → contactplaatsen met de
axonale boutons
- De contactplaatsen tussen axonale boutons en dendritische spines heten synapsen
- Doorgeven signaal via neurotransmitters
- Alle zenuwcellen hebben maar 1 axon
Klassen van zenuwcellen:
- Aantal uitlopers/neurieten
Unipolair (alleen een axon of dendriet), bipolair (1 axon, 1 dendriet), multipolair
Unipolaire cellen hebben 1 uitloper (maar deze kan splitsen in een ontvangende en
doorgevende kant) → wordt ook wel een pseudo unipolaire cel genoemd
Door het cellichaam gaan de signalen heel lastig: bij unipolaire cellen zit het cellichaam
buiten de route zodat het signaal snel kan worden doorgegeven (bijv. pijnneuronen)
- Vorm van dendrieten/boom van dendrieten
Pyramide cellen, stellate cellen, Purkinje cellen
- Lengte van het axon
Projectie neuronen, interneuronen (korte
neuronen, ook wel schakelneuronen)
- Functie
Afferente neuronen (bijv. sensorische
neuronen, signaal naar hersenen),
efferente neuronen (bijv. motor
neuronen, signaal van hersenen)
- Transmitter secretie
Glutamatergisch, dopiminergisch,
cholinergisch etc.
Langste axon:
Grote pootzenuw: axon van 1 meter lang
(ongeveer)
Takje nervus vagus die larynx innerveert loopt
om de aorta heen → deze zenuw is bij dieren
met een lange nek heel lang
,Menselijk brein bevat ongeveer 3-5 x 1011 (300 – 500 miljard neuronen)
- 1,6 x 1011 in de cerebrale cortex
- 1011 kleine granule cellen in het cerebellum
- We kunnen geen zenuwcellen aanmaken
Er zijn 10 keer meer gliacellen in het brein → hebben een ondersteunende functie (zeer
belangrijk)
- Gliacel type 1: oligodendrociet
Hebben uitlopers waarmee ze een isolerend laagje
maken rondom axonen → isoleren elektrisch signaal van
omgeving
Alleen in het centrale zenuwstelsel (hersenen +
ruggenmerg)
o In perifere zenuwstelsel zorgen de cellen van
Schwann voor myeline (zorgen allemaal voor een
klein stukje myeline)
- Gliacel type 2: astrocyten
Hebben uitlopers waarmee ze in het brein de bloedvaten bedekken → sluiten
bloedvaten af van de hersenen (dit heet de bloed-hersenbarrière)
Maken contact met zenuwcellen (met name synapsen) → kunnen de manier waarop
zenuwcellen met elkaar praten beïnvloeden
- Gliacel type 3: microgliacel
Vormen het immuunsysteem van de hersenen, worden niet in de hersenen gemaakt
Multipele scelerose: ontsteking van myeline → signaal kan niet goed worden doorgegeven
Neuronen zijn exciteerbare cellen:
- Exciteerbare cellen kunnen actiepotentialen genereren
- Actiepotentialen zijn snel en korte omkering in membraan
potentiaal die actief verspreiden over het celoppervlak →
door middel van verplaatsen van geladen deeltjes
Intracellulaire opnames:
- We maken contact met de binnenkant van de cel via een elektrode, hierbij kan je ook
gebruik maken van een referentie-elektrode aan de buitenkant van de cel
- Er is wel een vergroter voor nodig
, 3 verschillende type signalen:
- Rustpotentiaal: spanningsverschil over de celmembraan
wanneer het neuron in rust is (er is een vast
spanningsverschil van ongeveer -70 mV)
Hoe wordt het in stand gehouden?
o Kalium is positief geladen en cel bevat
kaliumkanalen (meeste kalium zit aan de
binnenkant van de cel) → kaliumkanaal is passief
en staat altijd open (kalium van binnen naar buiten, want concentratiegradiënt)
o Buitenkant van de cel: Na+ en Cl-
o Eiwitten hebben een negatieve lading in de cel (kunnen neuronen weinig mee)
o Elektrostatische kracht: voorkomt dat kalium naar buiten wil door een positieve
lading van de kalium ionen die zich al buiten de cel bevinden
- Gegradeerde potentiaal: kleine afwijking van de rustmembraanpotentiaal → betekent
nog niks voor de cel
- Actiepotentiaal: gegradeerde potentiaal kan leiden tot de actiepotentiaal → wordt
gebruikt om mee te communiceren, kunnen zich verplaatsen naar het uiteinde van het
axon (op het moment dat dit gebeurt worden neurotransmitters vrijgegeven)
Hoe wordt het in stand gehouden?
- Kalium is positief geladen en cel bevat kaliumkanalen
(meeste kalium zit aan de binnenkant van de cel) →
kaliumkanaal is passief en staat altijd open (kalium
van binnen naar buiten, want concentratiegradiënt)
o Elektrostatische kracht: voorkomt dat kalium
naar buiten wil door een positieve lading van
de kalium ionen die zich al buiten de cel
bevinden
o Evenwichtspotentiaal voor Kalium = -90 mV
o Elektrostatische kracht en diffusie kracht zijn constant in strijd met elkaar
- Eiwitten hebben een negatieve lading in de cel (kunnen neuronen weinig mee)
- Buitenkant van de cel: Na+ en Cl-
- Ook passief kanaal voor natrium
- De gecombineerde evenwichtspotentiaal voor kalium en natrium komt uit op -70 mV
- Zenuwcellen hebben ook een natrium-kalium pomp: deze pompt actief te veel naar
buiten gestroomde kalium naar binnen en te veel naar binnen gestroomde natrium naar
buiten
o Deze pomp is essentieel om de rustpotentiaal op peil te houden
o Voor ieder molecuul ATP gaan 2 kaliumionen naar binnen en 3 natriumionen
naar buiten
o Hersenen gebruiken de meeste ATP