100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting data driven management

Beoordeling
-
Verkocht
2
Pagina's
85
Geüpload op
27-12-2022
Geschreven in
2022/2023

samenvatting data driven management (combinatie van Engels en Nederlands)

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
27 december 2022
Aantal pagina's
85
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Data driven management
Examen: multiple choice (60%) zonder giscorrectie




Inhoudsopgave

1 Data Fundamentals ................................................................................................................................ 4
1.1 Data ....................................................................................................................................................... 4
1.1.1 Data in the 70’s & 80’s....................................................................................................................... 4
1.1.2 Big data producers: sensors .............................................................................................................. 4
1.1.3 Big data producers: IOT ..................................................................................................................... 5
1.1.4 Big data producers: the internet ....................................................................................................... 5
1.1.5 Big data producers: databases .......................................................................................................... 5
1.1.6 5 V’s of Big Data................................................................................................................................. 5
1.2 Use Cases ............................................................................................................................................... 7

1.3 Data Value Chain ................................................................................................................................. 10
1.3.1 Data value chain: from production to impact ................................................................................. 10
1.4 Data products ...................................................................................................................................... 13
1.4.1 Data product – definition ................................................................................................................ 13
1.4.2 Example 1: strawberry harvest prediction ...................................................................................... 14
1.4.3 Example 2: self-driving cars ............................................................................................................. 14
1.4.4 Example 3: smart thermostat .......................................................................................................... 14
1.4.5 Product format ................................................................................................................................ 15
1.4.6 Consumption archetype .................................................................................................................. 16
1.4.7 Data products specificities............................................................................................................... 17
1.5 Implementation ................................................................................................................................... 18
1.5.1 Frequency ........................................................................................................................................ 18
1.5.2 Pipelines .......................................................................................................................................... 19
1.5.3 Governance ..................................................................................................................................... 21
1.6 Recap lesson 1 ...................................................................................................................................... 22

2 Chapter II - Descriptive analysis ............................................................................................................ 23
2.1 Types of data........................................................................................................................................ 23
2.1.1 Example: hotel reviews data ........................................................................................................... 23
2.1.2 Terminology..................................................................................................................................... 24
2.1.3 Types of data ................................................................................................................................... 24
2.2 Descriptive analytics ............................................................................................................................ 26

.......................................................................................................................................................................... 26
2.2.1 Univariate analysis........................................................................................................................... 27
2.2.2 Bivariate........................................................................................................................................... 28
2.2.3 Multivariate analysis........................................................................................................................ 30
2.3 Before you start ................................................................................................................................... 30



1

, 2.3.1 Context ............................................................................................................................................ 30
2.3.2 Bias .................................................................................................................................................. 31
2.4 Recap lesson 2 ...................................................................................................................................... 33

3 Quadrant analysis ................................................................................................................................. 34

4 Data visualization ................................................................................................................................. 37
4.1 Goal of data visualization .................................................................................................................... 37
4.2 Dimensions, metrics & aggregation ..................................................................................................... 37
4.2.1 Definitions ....................................................................................................................................... 37
4.3 History .................................................................................................................................................. 40
4.4 Visual perception ................................................................................................................................. 41
4.4.1 Principles of visual perception......................................................................................................... 41
4.5 Common visualizations ........................................................................................................................ 43
4.6 Simple text ........................................................................................................................................... 44

4.7 Line graph ............................................................................................................................................ 44
4.8 Heatmap .............................................................................................................................................. 45
4.9 Waterfall .............................................................................................................................................. 45

5 Data Storytelling................................................................................................................................... 45

5.1 KPIs....................................................................................................................................................... 45
5.1.1 Advantages of KPIs .......................................................................................................................... 47
5.2 Dashboarding....................................................................................................................................... 48
5.2.1 Data value chain .............................................................................................................................. 48

5.3 The story of Ignaz Semmelweis ............................................................................................................ 51
5.4 Data storytelling .................................................................................................................................. 52

5.5 Best practices ....................................................................................................................................... 54
5.5.1 Structure the data story .................................................................................................................. 54
5.5.2 Provide context ............................................................................................................................... 55
5.5.3 Selecting the right data ................................................................................................................... 56
5.5.4 Use the right visuals to tell the data story ....................................................................................... 57
5.5.5 Use text............................................................................................................................................ 60
5.6 examples .............................................................................................................................................. 61

6 Data Quality ......................................................................................................................................... 64
6.1 Article: data quality (toledo) ................................................................................................................ 64

7 Gastles VRTNws: inleiding tot de datajournalistiek ............................................................................... 66
7.1 Wat is datajournalistiek? ..................................................................................................................... 66
7.2 Waarom datajournalistiek? ................................................................................................................. 66
7.3 Het doel van datajournalistiek ............................................................................................................. 67




2

, 7.4 Wat doet een datajournalist? .............................................................................................................. 67

8 Advanced Analytics .............................................................................................................................. 67
8.1 Four types of analytics ......................................................................................................................... 67
8.2 Artificial intelligence ............................................................................................................................ 71
8.3 Exercise: AI cases (toledo) .................................................................................................................... 74

9 Artificial intelligence ............................................................................................................................. 75
9.1 History .................................................................................................................................................. 75
9.2 Algorithms............................................................................................................................................ 77
9.3 AI generation 1 – Search ...................................................................................................................... 77
9.4 AI generation 2 – Machine learning ..................................................................................................... 79
9.5 AI generation 3 – Deep learning .......................................................................................................... 82




3

, 1 Data Fundamentals
1.1 Data
1.1.1 Data in the 70’s & 80’s

• Floppy disk
• 1.44 MB – 2.88 MB




• How big are they?




1.1.2 Big data producers: sensors

• Bijvoorbeeld aan een rood licht zitten sensoren die continu data genereren als er auto’s over
de sensoren rijden.
• Ook bij auto’s die rijden wordt er constant data getrackt
• In de haven van antwerpen staat een Inose, dit is een digitale neus die elke 2 seconden stoffen
gaan detecteren in de lucht, zwafel en Co2.




4
€7,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
janehillewaere

Maak kennis met de verkoper

Seller avatar
janehillewaere UC Leuven-Limburg
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
11
Lid sinds
3 jaar
Aantal volgers
5
Documenten
9
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen