100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Exercises Market Research Methods

Beoordeling
-
Verkocht
9
Pagina's
42
Geüpload op
25-10-2021
Geschreven in
2021/2022

Summary market research methods - all exercise sessions. Theoretical document is also available

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
25 oktober 2021
Aantal pagina's
42
Geschreven in
2021/2022
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

MARKET RESEARCH
METHODS
EXERCISES


SAM STROO

, 1



PART 1: FACTOR ANALYSIS
CHECK THE STATISTICAL ASSUMPTIONS IN SPSS

ó We are looking for multicollinearity between the variables, and we can check this by using 4 measures

1. Correlation matrix
2. Partial correlation/ Anti-image correlation matrix
3. Bartlett’s test of sphericity
4. KMO

THE MEASURES


1. CORRELATION MATRIX

I = table showing the intercorrelations among all variables
I Visual inspection: high (>.30) and not equal (because some structure must exist, because it would
mean that all variables can be grouped together in one factor)
I It is a symmetrical table and the correlation with the same variable is off course 1
I You have to ask for the correlation matrix separately, but you only need to ask for it once at the
beginning of the factor analysis to show that it is meaningful to do the factor analysis

ANALYZE > CORRELATE > BIVARIATE




Here we see the shared correlation between two variables ó Anti-image correlation: the correlation that is left
to be unexplained (we want partial correlation to be as low as possible)

, 2


2. PARTIAL CORRELATION/ANTI-IMAGE CORRELATION MATRIX

o Calculate partial correlation (Analyze > Correlate > Partial) = the correlation between 2 variables that
remains when the effects of other variables are taken into account
o Partial correlation should be low (high = .7) > look at the absolute values
o Anti-image correlation matrix: negative values of partial correlation should all be low
o To get this, we need to check Anti-image (tab descriptives) when we do the PCA analysis in SPSS

ANALYZE > DIMENSION REDUCTION > FACTOR > DESCRIPTIVES




! LOOK AT ANTI-IMAGE CORRELATION, NOT AT THE COVARIANCE ONE!


3. BARLETT’S TEST OF SPHERICITY

ð Are the variables significantly correlated or not?
ð H0: correlation matrix = identity matrix (i.e. the variables are uncorrelated, 1 on the diagonal but
everywhere else it is zero and it means that the variables are uncorrelated and we do not want this)


4. MEASURE OF SAMPLING ADEQUACY (KMO)

= Kaiser-Meyer-Olkin Measure of Sampling Adequacy
= measure calculated for both the entire correlation matrix and each individual variable (see diagonal on anti-
image for individual scores)

, 3


ð Ranges from 0 to 1
ð .80: meritorious/ .70: average / .60: mediocre/ .50: absolute minimum/ <.50: unacceptable
ð We get this by checking KMO and Barlett’s test of sphericity with descriptives
ð We could also see the individual KMO’s in the anti-image correlation table (with an ‘a’ above it)




ASSUMPTIONS IN SUMMARY

ð Strong conceptual foundation (structure exists)/ Variables: metric (NOT binary or categorical), 3-5
items per factor, parsimonious/ Sample size: >100, 10:1 / Everything needs to be on the same scale
ð Correlation matrix: high, not equal / Partial correlation,Anti-image: low values above & below diagonal
ð Bartlett’s test of sphericity: significant & KMO: >.50 // >.60

RUNNING A PCA IN SPSS

Exercise with data pleasure and planning: A supermarket chain asked 500 of its customers to fill in a
questionnaire which contained 12 questions about shopping behaviour, all on a 7 point Likert scale

ð 2 underlying dimensions found: pleasure and planning (confirmatory factor analysis, but if we don’t
know it beforehand it is exploratory)
ð Next: perform PCA analysis

ANALYZE > DIMENSION REDUCTION > FACTOR

- Descriptives: initial solution, KMO, anti-image
- Extraction: principal components, correlation matrix (not in ouput, but standardizes the items for
you), unrotated solution, scree plot, eigenvalues >1 (because it is an exploratory factor analysis)
- Rotation: varimax (= rotation method), rotated solution
- Options: exclude cases listwide, sorted by size (to sort them), suppress small coefficients (to get a
better overview)

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
shw1999 Universiteit Gent
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
459
Lid sinds
6 jaar
Aantal volgers
307
Documenten
0
Laatst verkocht
1 week geleden

3,3

34 beoordelingen

5
6
4
10
3
11
2
1
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen