Wpo
-
Herhaling afgeleiden (formulelyst online) zoek die van Wiskunde s
Afgeleiden : basis afgeleiden Wiskunde/canvor
(wie
+ Kettingregel :
(f(g(X) f'(g(x) g(x) =
·
(16x =x) 48x2 + 2
48X2
6) + 34x + =
34 -
x =
+ 14
-
Te
(Kettingregel) 2) (znx) = zenx . (n (3) . (2x) = zen() . en (3) .
Ex
(mettingregel) 3) (2193x) -203 * (109 -
3 x) =
193X
.
x ↑ (3)
En
productregels 4) la 2).
= (a) . 2+ a. Tal29 =
1 .
2 + a . en (2)
- 2+ a . 2 en(2)
(eP + s)
quotientalis) =y7 = .
-
y .
(eb s) + =
(23 + 1) y
- .
et
(e3 +12 (23 + 12
Essex)e((z) -
.
-
( =
letan(e)) . + . (ve etan(e)
-(tan() + e .
(2) Etan(2) (2 3) t + +
(ec(x) =
(x) -(e +an(2) + e?xe (2) + +an(z) .
-(2+ 3) =. 22
-
-(tan(z) + 2 .
selz) + tan(2) Z .
(2) (sin(n) Cos(x) .
optie d
↑ regel
-
-(cos(X) sinf(x) -
sin (2x) =
2 sin(X) .
(os(X)
(2x)
Ketting regel -
(2 (0S(X) (-sin(X).
-
2 sin (X) COS(x)
.
=> sin(X)Cos(X) =
sin
dx 2
( 420s(X) sin(N)
(si2x)
-
- .
4((s (x) sin (x)
-x)
-
-
-
4( -
4cos(X)sin(N)
-
-
16 Cos(N) sin (N).
, *
2enx
(e tan(4X)
+
17 -
3
s
-
eex + 2enx
.
(ex + 24) -
34 +an4x) . )
4
2enx tan(ux)
ee +
(ex 2)
- .
+ -
24
(s(4x) 2-herschrijven)
herhaling integrale
Integralen :
basisintegralen (wiskunde 1 /Canvas)
+
integratiemethodes (wiskunde s
↳ bub :
substitutiemethode
,
Partiete integratie , speitsen in partieelbreuken
=
5) sin(x 1) +
=
(sin(t) .
Bat =
(sin(t) . dt =
3) (s(t) +
-
C
·
x
t +
- cosle C
=
1
E -
d =
= x .
dx =
= d -
-3 cos(x
+ 1) + c
Vax
-dx
> =
-
PI :
fu bo
cos(X)dx
.
DI
- u .
V -
Sw .
du 8)
(e .
sin (4) -d x =
sin (x) e .
-
JeX . sin (N) ex- (cos() ex-Set(sin()dx)
u =
sin(X) >
-
du =
Cos(X) d ·
-sin ( e-cos[ e .
-
Sesin (d) .
dx
e 2/esin
* *
du = .
dx =
v =
e Dus = (X) & x =
sin(x) e-cosle + C
u =
cos(X) >
= du = -
sin(X)dX =>
Jesin() ax =
(sin(x) e -
Cos(x) et) + C
*
du = edx => u = e
Merkwaardig
product
Je ee >
-
(2)
px3
- 2x + x =
X(X2 -
2x + b) = x . (x -
b)
(noemer) ontbinden in factore
graad
Hellersgraad
- normen
in Partieelbreuken
7
I Splitsen
-Couling -roodse
I
Grood (tell), grood (noemer) >
-
Euclidische
#
2 C
in 2x + 2 +
speitsen PB : x +
-Ma macht
-
+ =
- d -
x (x -
1)Z
A(x 6) + Bx(x -) + Cx
E
-
A+ B = 1
X(x 1)2 -
2A B+ c = 2
AX BX
-
- -
2Ax + A + -
BX + Cx
A= 2
X(x -
3)2
B)x + -
( - 2 A B +c) x A
(
&e
-
-
+
x(X -
D)2
, ( **2x52ax (z ax /* + ax
=
aus : +
-ax
x 1) 1)
-
(u = (t = x -
- 2(n(x) -
en(x 1) - -
5 - + c
dr-S(N) -
S [ 25205N
Z
Nieuw 1 . = .
5 coscadx
sint
cost (x)
grove me (5 Cos(X) cosLN)
+ - · 5 dx
I
cos(X) sin(x)
25[cos(N)
=> = 1 - =
. dx
=>
2520s x) = 25 -
25sin(N)
= [Co CoscIXax
- +
-
- 25 -
(5sin(x)
E5 /bax
+
ScosCed
-
Stel : r = 5 Sin(x) sinins
2x 5 sinex E
=
-
=> dr = 5 COSCN . dX +
Andere (N 1 COSLIX
EB3sn(5) + an(2 Rgsin(t)
-
cos = + -
basisregel 2
,