100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

samenvatting wiskunde

Beoordeling
-
Verkocht
-
Pagina's
29
Geüpload op
27-12-2024
Geschreven in
2024/2025

Het is een uitgebreide samenvatting van de theorie van de cursus aangevuld met theorie uit de powerpointslides muv van het hoofdstuk limieten. De samenvatting is geschreven in volgorde waarin de hoofdstukken behandeld zijn tijdens de hoorcolleges.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 december 2024
Aantal pagina's
29
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Hoofdstuk 3: Vergelijkingen
3.2. Lineaire vergelijking
 Lineaire vergelijking:
=vergelijking waarbij de onbekende voorkomt in de eerste graad
 Vorm: ax + b = 0
−b
 Één oplossing: x 1=
a
 Algemene regels:
 Zowel bij linker als rechterlid mag het zelfde getal worden
opgeteld/afgetrokken worden
 Zowel bij linkerlid als rechterlid mag met hetzelfde getal worden
vermenigvuldigd of door hetzelfde getal gedeeld, uitgezonderd 0!
 Het getal wijzigt van teken bij wisselen van lid bij optelling of
aftrekking en de bewerking verandert bij vermenigvuldiging en
deling
 Indien het antwoord strijdig is voor elke 𝑥∈ℝ, dan wordt de
oplossingsverzameling gezien als ledig en genoteerd als volgt: 𝑉=∅
 indien het antwoord geldig is voor elke 𝑥∈ℝ, dan wordt de
oplossingsverzameling genoteerd als volgt: 𝑉=ℝ




3.3. De vierkantsvergelijking of kwadratische
vergelijking
 vierkantsvergelijking/ kwadratische vergelijking:
=vergelijking waarbij de term met de hoogste graad van de tweede graad
is
 vorm: ax² + bx + c = 0
 discriminant: D = b² - 4ac

Discriminant # oplossingen Oplossing(en)
D>0 2 oplossingen −b+ √ D
V={ ,
2a
−b−√ D
}
2a

D=0 1 dubbele oplossing −b
V={ }
2a

D<0 Geen oplossingen V=∅

 basisregel:
 √ x 2 = |x|
x kan dus zowel positief als negatief zijn

,  Som- en product regel:
 D > 0 en x 1 ≠ x 2
−b
 Som: = x 1+ x2
a
c
 Product: = x 1∗x 2
a

 Ontbinden in factoren:

ax² + bx + c (x + x 1 ¿ (x + x 2 ¿
ax² - bx - c of ax² + bx (x - x 1 ¿ (x + x 2 ¿
-c
ax² - bx + c (x - x 1 ¿ (x - x 2 ¿

 Merkwaardige producten:

(a + b)² a² + 2ab + b²
(a – b)² a² - 2ab + b²
(a + b)² (a – b)² a² - b²
(a + b)³ a³ + 3a²b + 3ab² + b³
(a – b)³ a³ - 3a²b + 3ab² - b³
(a + b)(a² - 2ab + a³ + b³
b²)
(a – b)(a² + 2ab – a³ - b³
b²)
(a + b + c)² a² + b² + c² + 2ab +
2bc + 2ac




3.4. Bikwadratische vergelijking
 Bikwadratische vergelijking:
 Vorm: a x 4 +b x 2 +c of a x 6 +b x 3+ c
 Herleiden tot vierkantsvergelijking door substitutie: t = x²



3.5. Hogere-graadsvergelijkingen:
 Hogere-graadsvergelijking:
 Vorm V(x) = 0 met V(x) veelterm van graad 3 of hoger
 Linkerlid ontbinden in factoren
 Regel van Horner:
 Verkorte wijze van euclidische staartdeling
 Algemene methode: mogelijkst restterm
 Volgens criterium deelbaarheid: geen restterm
 Functie van hogere graad: T(x)
 Deler: N(x) = x – a
 Quotiënt veelterm: Q(x)
 Restterm: R(x)

,  Noteren: T(x) = (x – a) * Q(x) + R(x)
 Indien restterm nul is, is a een nulpunt van de functie




3.6. Rationale vergelijkingen
 Rationale vergelijking:
T 1 (x ) T 2 ( x )
 Vorm: =
N 1 (x) N 2 ( x)
 Bestaansvoorwaarde: N 2 ( x ) ≠ 0
 Wegwerken noemers zodaning dat we hogere-graadsvergelijking
bekomen




3.7. Irrationale vergelijkingen
 Irrationale vergelijking:
=vergelijking waarbij de onbekende onder een wortelteken staat
 Wegwerken door bede leden tot een bepaalde macht te verheffen
 Bij evenmachtswortel: bestaansvoorwaarde dat alles onder te wortel
groter dan of gelijk aan 0 moet zijn
 √ n n
a=B { A=B als n oneven en A=B n en A ≥ 0 als n even
 Soms kwadrateringsvoorwaarde: alles wat gelijk is aan een
vierkantswortel moet positief zijn




3.8. Eigenschappen ongelijkheden in één
onbekende
 Eigenschap 1:
=worden beide leden van een ongelijkheid met eenzelfde positief getal
vermenigvuldigd of gedeeld wordt een ongelijkheid in de zelfde zin
bekomen
 Eigenschap 2:
=worden beide leden van ongelijkheid met eenzelfde negatief getal
vermenigvuldigd wordt een ongelijkheid in tegengestelde zin bekomen
 Eigenschap 3:
=wordt in beide leden van een ongelijkheid eenzelfde getal opgeteld of
afgetrokken, dan wordt een ongelijkheid in zelfde zin bekomen
 Bijzondere gevallen:

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
vertentencaitlin Hogeschool Gent
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
10
Lid sinds
1 jaar
Aantal volgers
0
Documenten
13
Laatst verkocht
3 dagen geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen