100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting hoofdstuk 10: Lead optimization - optimizing target interactions

Beoordeling
-
Verkocht
-
Pagina's
11
Geüpload op
27-05-2023
Geschreven in
2022/2023

Uitgebreide samenvatting, gebruik makende van het handboek, van het hoofdstuk over lead optimalisatie (target interactions). Afbeeldingen en key points. Grote kans op examenvragen uit dit hoofdstuk. Gegeven door Prof. Koen Augustyns.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Chapter 13: optimizing target interactions
Geüpload op
27 mei 2023
Aantal pagina's
11
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

CHAPTER 10: OPTIMIZING TARGET INTERACTIONS
Introduction
De inleiding belicht het belang van lead-optimalisatie bij het ontwerpen van geneesmiddelen. Na de ontdekking van
een lead compound is het doel de interactie met het doelwit te optimaliseren om de gewenste farmacologische
effecten te bereiken. Tijdens dit proces moeten verschillende factoren in aanmerking worden genomen:

1. Selectiviteit en Activiteit: Het geoptimaliseerde geneesmiddel moet een goede selectiviteit en activiteit voor
zijn doelwit vertonen, wat betekent dat het een specifieke interactie aangaat met het beoogde biologische
doelwit en de gewenste therapeutische effecten produceert.
2. Minimale bijwerkingen: Het is cruciaal om het optreden van bijwerkingen in verband met het geneesmiddel
tot een minimum te beperken. Dit houdt in dat een verbinding wordt ontworpen die selectief met het doelwit
interageert en tegelijkertijd interacties met andere biologische componenten minimaliseert om ongewenste
effecten te verminderen.
3. Synthese en chemische stabiliteit: Het geneesmiddel moet gemakkelijk kunnen worden gesynthetiseerd met
behulp van praktische methoden en chemische stabiliteit bezitten om de consistente productie en opslag
ervan te garanderen.
4. Niet-toxiciteit: Het geoptimaliseerde geneesmiddel moet niet-toxisch zijn, wat betekent dat het geen
schadelijke effecten of schade aan het lichaam veroorzaakt.

Farmacokinetische eigenschappen: Farmacokinetiek verwijst naar absorptie, distributie, metabolisme en uitscheiding
(ADME) van het geneesmiddel in het lichaam. Het is belangrijk te kijken naar het vermogen van het geneesmiddel om
zijn doel effectief te bereiken en een aanvaardbare levensduur of werkingsduur in het lichaam te hebben.

Er wordt benadrukt dat zowel de farmacodynamiek (interactie met het doelwit) als de farmacokinetiek (vermogen om
het doelwit te bereiken en levensduur in het lichaam) evenveel prioriteit moeten krijgen tijdens de optimalisatie van
de lead. Verwaarlozing van een van beide aspecten kan leiden tot een onwerkzaam geneesmiddel, zelfs als de
interactie met het doelwit goed is geoptimaliseerd. Daarom moeten beide aspecten de ontwerpstrategieën
beïnvloeden en bepalen welke analogen of modificaties van de hoofdverbinding worden gesynthetiseerd.


Structure-activity relationships (SAR)
Medicinale chemici streven ernaar de belangrijke delen van de molecule voor zijn biologische activiteit te
identificeren. Zij kunnen röntgenkristallografie en moleculaire modelleringssoftware gebruiken om de
bindingsinteracties te analyseren als de doelstructuur bekend is en gekristalliseerd kan worden. Zo niet, dan
vertrouwen zij op de synthese van analogen met kleine variaties en testen zij hun biologische activiteit in vergelijking
met de oorspronkelijke verbinding. De analogie van het geneesmiddel als chemische 'ridder' benadrukt de noodzaak
om essentiële structurele kenmerken en beschermende elementen te identificeren. Door functionele groepen in
analogen te wijzigen, kunnen zij bepalen welke groepen cruciaal zijn voor de activiteit. Het gemak van de synthese van
analogen hangt af van de hoofdverbinding, en het begrip van potentiële bindingsinteracties helpt bij het ontwerp
ervan. In het algemeen omvat de studie van SAR het analyseren van interacties, het identificeren van belangrijke
groepen, het synthetiseren van analogen en het beoordelen van hun invloed op de
biologische activiteit.

Binding role of alcohols and phenols
Alcoholen en fenolen zijn functionele groepen die vaak voorkomen in geneesmiddelen, en
zij nemen vaak deel aan waterstofbruginteracties. Het zuurstofatoom in deze groepen
fungeert als waterstofbrugacceptor, terwijl het waterstofatoom dient als
waterstofbrugdonor. Door deze functionele groepen te wijzigen, bijvoorbeeld door
methylether- of esteranalogen te synthetiseren, kan het effect van waterstofbruggen op de
bindende eigenschappen van het geneesmiddel worden onderzocht. Methylethers

, verstoren de waterstofbinding door het hydroxylproton te verwijderen en sterische hinder te introduceren.
Esteranalogen belemmeren de waterstofbinding door een grotere bulk en gewijzigde elektronische eigenschappen. De
positie van de estergroep kan ook het vermogen beïnvloeden om effectieve waterstofbruggen te vormen met het
doelbindingsgebied. Het acetyleren van alcoholen en fenolen om esters te vormen of ze om te zetten in ethers is een
gebruikelijke aanpak bij het ontwerpen van geneesmiddelen. Bovendien moet worden opgemerkt dat fenolen, die
verbonden zijn met aromatische ringen, intermoleculaire interacties kunnen aangaan die verder gaan dan
waterstofbindingen.

Binding role of aromatic rings
Aromatische ringen in geneesmiddelen spelen een rol bij hydrofobe interacties, met
name van der Waals interacties met vlakke hydrofobe gebieden van de bindingsplaats.
Als een analoog de aromatische ring vervangt door een cyclohexaanring, is de kans
kleiner dat het effectief bindt omdat de cyclohexaanring niet vlak is. De axiale protonen
in de cyclohexaanring kunnen een zwakke interactie aangaan, maar fungeren ook als
buffer, waardoor de rest van de ring op afstand wordt gehouden. Als het bindingsgebied
bovendien een smalle gleuf of een vlak oppervlak vereist, past de volumineuzere
cyclohexaanring mogelijk niet goed.

Het omzetten van aromatische ringen in cyclohexaanringen is moeilijk en meestal niet
succesvol bij de meeste loodverbindingen, zodat voor de bereiding van analogen met
cyclohexaanringen meestal volledige synthese nodig is. Aromatische ringen kunnen ook
deelnemen aan interacties met aminium- of quaternaire ammoniumionen via geïnduceerde dipoolinteracties of
waterstofbruggen. Dergelijke interacties zijn echter niet mogelijk met het cyclohexyl-analoog.

Binding role of alkenes
Net als aromatische ringen zijn alkenen vlak en hydrofoob, zodat ook zij
kunnen interageren met hydrofobe gebieden van de bindingsplaats via van der
Waals interacties. De activiteit van het equivalente verzadigde analoog zou het
testen waard zijn, aangezien het verzadigde alkylgebied omvangrijker is en het
relevante gebied van de bindingsplaats niet zo dicht kan benaderen plaats niet
zo dicht kan benaderen. Alkenen zijn over het algemeen gemakkelijker te
reduceren dan aromatische ringen, dus is het misschien mogelijk om het
verzadigde analoog rechtstreeks te bereiden uit de hoofdverbinding.

Binding role of ketones and aldehydes
Ketongroepen komen vaak voor in medicinaal-chemische structuren en kunnen met een bindingsplaats interageren via
waterstofbruggen. De carbonylzuurstof in de ketongroep fungeert als
waterstofbrugacceptor, waardoor twee mogelijke interacties mogelijk zijn door de
aanwezigheid van twee eenzame elektronenparen. De vlakke geometrie van de
ketongroep vergemakkelijkt deze interacties, en het aanzienlijke dipoolmoment ervan
maakt dipool-dipoolinteracties met de bindingsplaats mogelijk.
De reductie van een keton tot een alcohol, waardoor de geometrie van de functionele
groep verandert van vlak naar tetraëtaal, kan de bestaande waterstofbruggen en
dipool-dipoolinteracties verzwakken. Indien het vermoeden bestaat dat de zuurstof in
het alcoholanaloog nog steeds als waterstofbrugacceptor fungeert, kunnen ether- of
esteranalogen worden onderzocht, zoals eerder vermeld. Volledige reductie van een
keton tot een alkaan door verwijdering van de zuurstof is voor veel leidende
verbindingen in de medicinale chemie echter niet praktisch.
Aldehyden, hoewel minder gebruikelijk in geneesmiddelen vanwege hun reactiviteit en gevoeligheid voor metabole
oxidatie, kunnen een soortgelijke interactie hebben als ketonen. Analogen van aldehyden kunnen op soortgelijke wijze
worden bestudeerd.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ellenFAR Universiteit Antwerpen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
31
Lid sinds
5 jaar
Aantal volgers
20
Documenten
12
Laatst verkocht
1 week geleden

5,0

2 beoordelingen

5
2
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen