100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of Statistics 1: Description And Inference

Beoordeling
-
Verkocht
-
Pagina's
18
Geüpload op
10-08-2022
Geschreven in
2019/2020

Summary of Statistics 1: Description And Inference

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
10 augustus 2022
Aantal pagina's
18
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

1. Comment
7 December 2019 at 13:48:58
Median of lower half

2. Comment
7 December 2019 at 13:49:07
Medium of upper half




Statistics 1: Description and
Inference
Lecture 1 - Distributions, Means and Deviations

Variable: anything that can be measured and can differ across entities across time
• Independent (x): cause, doesn’t change
• Dependent (y): outcome, does changes

Levels of measurement:
• Categorical
• Nominal: no natural order
• Ordinal: natural order/rank
• Continuous vs discrete:
• Interval: 0 is arbitrary (e.g. °C)
• Ratio: 0 is meaningful (e.g. Kelvin)

Frequency distributions:
• Measure of central tendency: central position of data set
• Mean: average of numbers
n
∑i=1 xi
• x̄ =
n
• μ: mean of population
• x̄: mean of sample
• Sensitive to extreme values/outliers
• Median: middle score when data is arranged by magnitude
• Mode: most frequent score
• Measure of dispersion: stretch/squeeze of data set
• Range: maximum value - minimum value
• Interquartile range (IQR): range of middle 50%
1 2 • Q3 - Q1
• Deviance: how much does data deviate from mean
n
SS ∑ (xi − x̄ )2
2
• Variance: s = = i=1
N−1 N−1
• SS: sum of squared errors
• Standard deviation: s = var i a n ce
• σ: standard deviation of population
• s: standard deviation of sample
• Normal distribution: where mean = median = mode (symmetrical), allow us to calculate
probabilities of outcome values
• Ranges:
• 68% within 1σ of μ
• 95% within 1.96σ of μ

,3. Comment
7 December 2019 at 15:10:34
Multiple of σ (e.g. 1.96)

4. Comment
7 December 2019 at 14:08:27
Don’t do both smaller or both
larger

5. Comment
9 December 2019 at 12:40:50
When categories are not
substituted by numbers

6. Comment
7 December 2019 at 14:22:47 • 99.7% within 3σ of μ
Instead of computed as 0. • Standardizing normal distribution:
x − x̄
3 • Z-score: z =
Missing values given random s
number (e.g. -8) in data view, • Refer to table of standard normal distribution to identify probability
which is identified as value to be • Finding ranges:
excluded in variable view. • If both values on same side of mean, subtract like normal
4 • If each value on either side, choose one larger and one smaller portion and subtract
7. Comment
7 December 2019 at 14:30:16
Opens up syntax
SPSS 1
Necessary to prevent technical
issues? Windows:
• Data editor: input data
8. Comment • Tabs:
7 December 2019 at 14:30:32
• Variable View: defining variables (and their characteristics)
Opens up output/viewer 5 • Type: numeric, string (categorical)
• Label: full name of variable
• Values: allows categories to be represented as numbers
6 • Missing: identifies values to be excluded from data
• Measure: scale (interval-ratio), ordinal, nominal
• Data View: defining values within each variable
• Output/viewer: interpret data (displays graphs, tables, special values)

Analyzing frequency distributions:
[Analyze] → [Descriptive Statistics] → [Frequencies] → select variable(s) → click arrow →
7 8 [Statistics…] → choose measures → [Continue] → [Paste] → click play

, 9. Comment
7 December 2019 at 14:38:07
Expected

10. Comment
7 December 2019 at 14:38:13
Observed

11. Comment
7 December 2019 at 14:38:50
E.g. deviance

12. Comment
7 December 2019 at 14:34:43
Measured data

13. Comment Lecture 2 ??
7 December 2019 at 14:34:55
Estimated data (from variables) Statistical models: summarize data (observed) and predict real world (expected)

14. Comment 9 11 outcomei = (model) + errori
7 December 2019 at 15:01:51
12 13 • Combination of variables and parameters
Where means of samples are
there own data values
Goodness of fit:
• Tradeoff between simplicity and accuracy
15. Comment n
SS ∑ (outcom ei − m od eli )2
7 December 2019 at 15:07:55
• m ea n squ ared er r or (MSE ) = = i=1
Most normal. N−1 d egrees of f reed om
• Aka variance (more general)
Interval range in which 95% of • Degrees of freedom = N - 1
sample means fall. • outcomei = xi
• modeli = x̄
Or there Is 5% chance that range • outcomei = b0 + b1xi + errori
does not include population • Quadratic equation (y = ax + b + errori)
mean
Sampling:
16. Comment • Samples: estimated population parameters
7 December 2019 at 15:09:52 • Allow us to generalize about population
From Z-score. • Sampling distribution: theoretical distribution of infinite samples
• Central limit theorem: when samples become large, average of sample means = population
17. Comment mean
7 December 2019 at 15:19:34 • Approximately normally distributed
More prone to produce values far 14 • Standard error (σx̄ ): standard deviation of sampling distribution
from mean s
σx̄ =
• N
18. Comment • Con dence interval: range in which true population mean likely exists
7 December 2019 at 15:20:40 • Format: CI = {lower bound; upper bound}
As N increases, t-distribution • CI = x̄ ± threshold value × σx̄
more similar to normal 15 • Usually 90%, 95%, 99%
distribution. • Higher CIs are wider ranges
• Using z-score (sample > 100):
16 • 95% CI = x̄ ± 1.96 × σx̄
• Central limit theorem allows us to use z-score
• Using t-distribution (sample < 100)
17 • Symmetric/bell-shaped (like normal distribution) but heavier tails
18 • Shape depends on degrees of freedom (df = N - 1)
• CI = x̄ ± tN-1 × σx̄
• tN-1 found in table of t-distribution




SPSS 2





fi
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
bellakim

Maak kennis met de verkoper

Seller avatar
bellakim Universiteit Leiden
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
5
Lid sinds
3 jaar
Aantal volgers
4
Documenten
29
Laatst verkocht
1 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen