Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solution Manual for A First Course in Differential Equations with Modeling Applications, 12th Edition – Dennis Zill | Verified Solutions | 2025/2026

Note
-
Vendu
-
Pages
1222
Grade
A+
Publié le
12-12-2025
Écrit en
2025/2026

This official-style solution manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis Zill offers complete, step-by-step solutions to every problem across all chapters. Perfect for students in calculus, engineering, mathematics, and applied sciences, this manual clarifies key concepts such as: • First-order and higher-order ODEs • Linear differential equations • Modeling applications • Laplace transforms • Series solutions • Systems of differential equations • Numerical methods Designed for US college coursework, this resource helps with homework, quizzes, midterms, finals, and engineering math exam prep. All solutions are clear, accurate, and formatted for fast understanding. Updated for 2025/2026, ensuring alignment with current university requirements.

Montrer plus Lire moins
Établissement
Differential Equations With Modelling Applications
Cours
Differential equations with modelling applications











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Differential equations with modelling applications
Cours
Differential equations with modelling applications

Infos sur le Document

Publié le
12 décembre 2025
Nombre de pages
1222
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ....................................................................................................................................... 1
Exercises 1.1 ......................................................................................................................................................... 1
Exercises 1.2 .......................................................................................................................................................14
Exercises 1.3 .......................................................................................................................................................22
Chapter 1 in Review Solutions ........................................................................................................................ 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v. However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain yj = — 12 e−x/2. Then 2yj + y = —e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 —
14. From y = — e 20t we obtain dy/dt = 24e−20t , so that
5 5
dy 6 6 −20t
+ 20y = 24e−20t + 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x,
so that yjj — 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j −1/2
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 — x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is
not defined at x = —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have
j
y = 25(1 + tan 2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From y j =
2x/(4 — x2)2 we have
2
1
yj = 2x = 2xy2.
4 — x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter-
vals are (—∞, —2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11
2
— sin x) −3/2 (— cos x) we have

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.



2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
— =1 2
2X — 1 dt X — 1 dt
2 1 dX t
— =1 –4 –2 2 4
2X — 1 X — 1 dt
–2
2X — 2 — 2X + 1 dX
=1
(2X — 1) (X — 1) dt
–4
dX
= —(2X — 1)(X — 1) = (X — 1)(1 — 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X — 1
= et
X —1
2X — 1 = Xet — et

(et — 1) = (et — 2)X
et — 1
X= .
et — 2

Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (—∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

2 dy dy 4
—2x — 4xy + 2y =0
dx dx
2
—x2 dy — 2xy dx + y dy = 0
x
2xy dx + (x2 — y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y2 — 2x2y — 1 = 0
√ √
for y, we get y = 2x2 ±
4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
The graph of y1(x) is solid and the graph of y2 is dashed.




3
€15,74
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
StudyMuse Chamberlain College Of Nursing
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
73
Membre depuis
4 mois
Nombre de followers
6
Documents
1637
Dernière vente
5 jours de cela
`Trusted Nursing Resources for top marks

High quality nursing notes , summaries , and exam guides. Accurate , concise , and exam focused to help nursing students pass with confidence.

3,3

12 revues

5
5
4
0
3
3
2
1
1
3

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions