Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Incropera's Principle of Heat and Mass Transfer [Solutions] [8 ed.]

Note
-
Vendu
-
Pages
2088
Grade
A+
Publié le
23-11-2025
Écrit en
2025/2026

what is Incropera's Principle of Heat and Mass Transfer how does heat transfer work in Incropera's principles guide to understanding mass transfer in Incropera's book benefits of studying Incropera's heat and mass transfer explanation of conduction in Incropera's principles introduction to convection heat transfer Incropera what are the key concepts in Incropera's textbook how to apply Incropera's principles in engineering overview of radiation heat transfer from Incropera basics of diffusion mass transfer in Incropera best textbook for heat and mass transfer Incropera Incropera vs other heat transfer books comparison top solutions manual for Incropera's principles reviews of Incropera's Fundamentals of Heat and Mass Transfer alternatives to Incropera for engineering students how good is Incropera for exam preparation Incropera's book features and benefits analysis comparison of Incropera 7th and 8th editions user experiences with Incropera's heat transfer text Incropera's principles application in real-world scenarios buy Incropera heat and mass transfer textbook online price of Incropera's Fundamentals of Heat and Mass Transfer discount codes for Incropera textbook purchase where to buy used Incropera book near me cost of Incropera 8th edition with solutions manual purchase Incropera ebook with instant download best deals on Incropera's principles hardcover Incropera textbook rental options and prices order Incropera heat transfer book with free shipping buy new Incropera edition at lowest price

Montrer plus Lire moins
Établissement
Incropera\\\'s Principle Of Heat And Mass Transfer
Cours
Incropera\\\'s Principle of Heat and Mass Transfer











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Incropera\\\'s Principle of Heat and Mass Transfer
Cours
Incropera\\\'s Principle of Heat and Mass Transfer

Infos sur le Document

Publié le
23 novembre 2025
Nombre de pages
2088
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

PROBLEM 1.1


KNOWN: Temperature distribution in wall of Example 1.1.

FIND: Heat fluxes and heat rates at x = 0 and x = L.

SCHEMATIC:




ASSUMPTIONS: (1) One-dimensional conduction through the wall, (2) constant thermal conductivity,
(3) no internal thermal energy generation within the wall.

PROPERTIES: Thermal conductivity of wall (given): k = 1.7 W/m·K.

ANALYSIS: The heat flux in the wall is by conduction and is described by Fourier’s law,

dT
q′′x = −k (1)
dx
Since the temperature distribution is T(x) = a + bx, the temperature gradient is

dT
=b (2)
dx

Hence, the heat flux is constant throughout the wall, and is


dT
q′′x =−k =−kb =−1.7 W/m ⋅ K × ( −1000 K/m ) =1700 W/m 2 <
dx

Since the cross-sectional area through which heat is conducted is constant, the heat rate is constant and is

qx =q′′x × (W × H ) =1700 W/m 2 × (1.2 m × 0.5 m ) =1020 W <

Because the heat rate into the wall is equal to the heat rate out of the wall, steady-state conditions exist. <

COMMENTS: (1) If the heat rates were not equal, the internal energy of the wall would be changing
with time. (2) The temperatures of the wall surfaces are T 1 = 1400 K and T 2 = 1250 K.

, PROBLEM 1.2

KNOWN: Thermal conductivity, thickness and temperature difference across a sheet of rigid
extruded insulation.

FIND: (a) The heat flux through a 3 m × 3 m sheet of the insulation, (b) the heat rate through
the sheet, and (c) the thermal conduction resistance of the sheet.

SCHEMATIC:
m22
A = 49m



k = 0.029
qcond

12 °C
T1 – T2 = 10˚C


T1 T2


25 mm
L = 20
x

ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state
conditions, (3) Constant properties.

ANALYSIS: (a) From Equation 1.2 the heat flux is

dT T -T W 12 K W
q′′x = -k = k 1 2 = 0.029 × = 13.9 2 <
dx L m⋅K 0.025 m m

(b) The heat rate is

W
q x = q′′x ⋅ A = 13.9 2
× 9 m 2 = 125 W <
m

(c) From Eq. 1.11, the thermal resistance is

R t,cond =
∆T / q x = 12 K /125 W =
0.096 K/W <
COMMENTS: (1) Be sure to keep in mind the important distinction between the heat flux
(W/m2) and the heat rate (W). (2) The direction of heat flow is from hot to cold. (3) Note that
a temperature difference may be expressed in kelvins or degrees Celsius. (4) The conduction
thermal resistance for a plane wall could equivalently be calculated from R t,cond = L/kA.

, PROBLEM 1.3

KNOWN: Thickness and thermal conductivity of a wall. Heat flux applied to one face and
temperatures of both surfaces.
FIND: Whether steady-state conditions exist.
SCHEMATIC:

L = 10 mm

T2 = 30°C

q” = 20 W/m2
q″cond


T1 = 50°C k = 12 W/m∙K




ASSUMPTIONS: (1) One-dimensional conduction, (2) Constant properties, (3) No internal energy
generation.

ANALYSIS: Under steady-state conditions an energy balance on the control volume shown is

′′= qout
qin ′′ = qcond
′′ = k (T1 − T2 ) / L= 12 W/m ⋅ K(50°C − 30°C) / 0.01 m= 24,000 W/m 2


Since the heat flux in at the left face is only 20 W/m2, the conditions are not steady state. <

COMMENTS: If the same heat flux is maintained until steady-state conditions are reached, the
steady-state temperature difference across the wall will be

′′L / k 20 W/m 2 × 0.01 m /12 W/m
∆T = q= = ⋅ K 0.0167 K

which is much smaller than the specified temperature difference of 20°C.

, PROBLEM 1.4
KNOWN: Inner surface temperature and thermal conductivity of a concrete wall.
FIND: Heat loss by conduction through the wall as a function of outer surface temperatures ranging
from -15 to 38°C.
SCHEMATIC:




ASSUMPTIONS: (1) One-dimensional conduction in the x-direction, (2) Steady-state conditions, (3)
Constant properties.
ANALYSIS: From Fourier’s law, if q′′x and k are each constant it is evident that the gradient,
dT dx = − q′′x k , is a constant, and hence the temperature distribution is linear. The heat flux must be
constant under one-dimensional, steady-state conditions; and k is approximately constant if it depends
only weakly on temperature. The heat flux and heat rate when the outside wall temperature is T 2 = -15°C
are

q′′x =−k
dT
= k
T1 − T2
= 1W m ⋅ K
25 C − −15 C
=
(
133.3 W m 2 .
) (1)
dx L 0.30 m

q x = q′′x × A = 133.3 W m 2 × 20 m 2 = 2667 W . (2) <
Combining Eqs. (1) and (2), the heat rate q x can be determined for the range of outer surface temperature,
-15 ≤ T 2 ≤ 38°C, with different wall thermal conductivities, k.
3500


2500
Heat loss, qx (W)




1500


500


-500


-1500
-20 -10 0 10 20 30 40

Ambient
Outside air temperature, T2 (C)
surface

Wall thermal conductivity, k = 1.25 W/m.K
k = 1 W/m.K, concrete wall
k = 0.75 W/m.K


For the concrete wall, k = 1 W/m⋅K, the heat loss varies linearly from +2667 W to -867 W and is zero
when the inside and outer surface temperatures are the same. The magnitude of the heat rate increases
with increasing thermal conductivity.
COMMENTS: Without steady-state conditions and constant k, the temperature distribution in a plane
wall would not be linear.
€14,47
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
TestBankDepotX

Faites connaissance avec le vendeur

Seller avatar
TestBankDepotX Harvard University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
10
Membre depuis
9 mois
Nombre de followers
1
Documents
308
Dernière vente
6 jours de cela
TestBankDepotX

TestBankDepotX – Your hub for high-quality test banks, study guides &amp; exam prep. Save time, study smarter, ace your exams! ⭐ Loved it? Leave a review &amp; help others succeed!

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions