Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Quantum Physics by Griffiths (part 1)

Vendu
37
Pages
39
Publié le
17-07-2014
Écrit en
2013/2014

Summary study book Introduction to Quantum Mechanics of Griffiths (hoofdstuk 1 t/m 5) - ISBN: 9781292024080, Edition: 2e, Year of publication: 2014

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofdstuk 1 t/m 5
Publié le
17 juillet 2014
Nombre de pages
39
Écrit en
2013/2014
Type
Resume

Aperçu du contenu

Samenvatting Quantum Physics I
From: Introduction to Quantum Mechanic s, by D.J. Griffiths

Door: Marenthe Hopma




07-11-2013, 2𝑛𝑑 edition “Introduction to Quantum Mechanics”

,Inhoud
1. The Wave Function ............................................................................................................................. 3
2. Time-Independent Schrödinger Equation .......................................................................................... 5
2.1 Stationary States .......................................................................................................................... 5
2.2 The Infinite Square Well ............................................................................................................... 6
2.3 The Harmonic Oscillator ............................................................................................................... 7
2.3.1 Algebraic Method .................................................................................................................. 7
2.3.2 Analytic Method .................................................................................................................... 8
2.4 The Free Particle ........................................................................................................................... 9
2.5 The Delta-Function Potential ...................................................................................................... 10
2.5.1 Bound States and Scattering States ..................................................................................... 10
2.5.2 The Delta-Function Well ...................................................................................................... 10
2.6 The Finite Square Well................................................................................................................ 11
3. Formalism......................................................................................................................................... 13
3.1 Hilbert Space .............................................................................................................................. 13
3.2 Observables ................................................................................................................................ 13
3.2.1 Hermitian Operators............................................................................................................ 13
3.2.2 Determinate States .............................................................................................................. 14
3.3 Eigenfunctions of a Hermitian Operator ..................................................................................... 14
3.3.1 Discrete Spectra .................................................................................................................. 14
3.3.2 Continuous Spectra ............................................................................................................. 14
3.4 Generalized Statistical Interpretation......................................................................................... 15
3.5 The Uncertainty Principle ........................................................................................................... 15
3.5.1 Proof of the Generalized Uncertainty Principle ................................................................... 15
3.5.2 The Minimum-Uncertainty Wave Packet ............................................................................. 16
3.5.3 The Energy-Time Uncertainty Principle ............................................................................... 16
3.6 Dirac Notation ............................................................................................................................ 16
4. Quantum Mechanics in Three Dimensions ....................................................................................... 18
4.1 Schrödinger Equation in Spherical Coordinates.......................................................................... 18
4.1.1 Seperation of Variables ....................................................................................................... 18
4.1.2 The Angular Equation .......................................................................................................... 18
4.1.3 The Radial Equation ............................................................................................................. 20
4.2 The Hydrogen Atom ................................................................................................................... 21
4.2.1 The Radial Wave Function ................................................................................................... 21


1

, 4.2.2 The Spectrum of Hydrogen .................................................................................................. 23
4.3 Angular Momentum ................................................................................................................... 24
4.3.1 Eigenvalues .......................................................................................................................... 24
4.3.2 Eigenfunctions ..................................................................................................................... 25
4.4 Spin............................................................................................................................................. 26
4.4.1 Spin ½ .................................................................................................................................. 26
4.4.2 Electron in a Magnetic Field ................................................................................................ 27
4.4.3 Addition of Angular Momenta ............................................................................................. 27
5. Identical Particles ............................................................................................................................. 29
5.1 Two-Particle Systems ................................................................................................................. 29
5.1.1 Bosons and Fermions........................................................................................................... 29
5.1.2Exchange Forces ................................................................................................................... 29
5.2 Atoms ......................................................................................................................................... 30
5.2.1 Helium ................................................................................................................................. 30
5.2.2 The Periodic Table ............................................................................................................... 31
5.3 Solids .......................................................................................................................................... 32
5.3.1 The Free Electron Gas .......................................................................................................... 32
5.3.2 Band Structure ..................................................................................................................... 33
5.4 Quantum Statistical Mechanics .................................................................................................. 34
5.4.1 An Example .......................................................................................................................... 34
5.4.2 The General Case ................................................................................................................. 35
5.4.3 The Most Probable Configuration ....................................................................................... 35
5.4.4 Physical Significance of 𝜶 and 𝜷 .......................................................................................... 36
5.4.5 The Blackbody Spectrum ..................................................................................................... 38




2

, 1. The Wave Function

To describe the position of a particle at any given time, we use a wave function, called the
Schrödinger Equation:
𝜕𝜓 ℏ2 𝜕 2 𝜓
𝑖ℏ =− + 𝑉𝜓
𝜕𝑡 2𝑚 𝜕𝑥 2

Where ℏ = = 1.054572 ∙ 10−34 𝐽𝑠
2𝜋
We define the probability of finding a particle between a and b, at time t as:

𝑏
𝑃 = ∫ |𝜓(𝑥, 𝑡)|2 𝑑𝑥
𝑎

Out if this equation, it follows that the integral |𝜓|2 must be 1 (the particle has to be somewhere).

∫ |𝜓(𝑥, 𝑡)|2 𝑑𝑥 = 1
−∞

So now if 𝜓(𝑥, 𝑡) is a solution to our Schrödinger Equation, then so is 𝐴𝜓(𝑥, 𝑡), where 𝐴 ∈ 𝕔. We can
find a by solving the square integral of 𝐴𝜓(𝑥, 𝑡). This is called normalizing the wave function.
For a particle in state 𝜓, the expectation value of x is given by the equation:
+∞
〈𝑥 〉 = ∫ 𝑥|𝜓(𝑥, 𝑡)|2 𝑑𝑥
−∞

Now as time goes on, 〈𝑥 〉 will change (because of the time dependence of 𝜓), and we might be
interested in knowing how fast it moves. We find that:

𝑑 〈𝑥 〉 𝜕 𝑖ℏ 𝜕 𝜕𝜓 𝜕𝜓 ∗
= ∫ 𝑥 |𝜓|2 𝑑𝑥 = ∫ 𝑥 (𝜓 ∗ − 𝜓) 𝑑𝑥
𝑑𝑡 𝜕𝑡 2𝑚 𝜕𝑥 𝜕𝑥 𝜕𝑥
𝜕𝑥
We can simplify this expression by using integration-by-parts. = 1 and because 𝜓 goes to zero at
𝜕𝑥
(±∞), we can throw away the ground term. Using now another integration-by-parts:

𝑑 〈𝑥 〉 𝑖ℏ 𝜕𝜓
=− ∫𝜓 ∗ 𝑑𝑥 = 〈𝑣 〉
𝑑𝑡 2𝑚 𝜕𝑥

This equation tells u show to calculate 〈𝑣 〉 directly from 𝜓. However, it is more customary to work
with momentum (p = mv), rather than velocity:

𝑑 〈𝑥 〉 𝜕𝜓
〈𝑝 〉 = 𝑚 = −𝑖ℏ ∫ (𝜓 ∗ ) 𝑑𝑥
𝑑𝑡 𝜕𝑥

The expressions obtained for 〈𝑥 〉 and 〈𝑝〉 now are:

〈𝑥 〉 = ∫ 𝜓 ∗ (𝑥)𝜓𝑑𝑥
ℏ 𝜕
〈𝑝 〉 = ∫ 𝜓 ∗ ( ) 𝜓𝑑𝑥
𝑖 𝜕𝑥




3
€2,99
Accéder à l'intégralité du document:
Acheté par 37 étudiants

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 6 avis
2 année de cela

3 année de cela

The formulas contain clear calculation errors.

6 année de cela

Stand off. And then some minor mistakes but for the rest it is a very good summary of a difficult subject

6 année de cela

6 année de cela

7 année de cela

3,5

6 revues

5
1
4
2
3
2
2
1
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
mhopma Rijksuniversiteit Groningen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
37
Membre depuis
11 année
Nombre de followers
36
Documents
2
Dernière vente
1 année de cela

3,5

6 revues

5
1
4
2
3
2
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions