Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solutions Manual for Biomolecular Thermodynamics, From Theory to Application, 1e Douglas Barrick (All Chapters)

Note
-
Vendu
-
Pages
136
Grade
A+
Publié le
30-10-2025
Écrit en
2025/2026

Solutions Manual for Biomolecular Thermodynamics, From Theory to Application, 1e Douglas Barrick (All Chapters)

Établissement
Biomolecular
Cours
Biomolecular











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Biomolecular
Cours
Biomolecular

Infos sur le Document

Publié le
30 octobre 2025
Nombre de pages
136
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Solutions Manual for
Biomolecular
Thermodynamics,
From Theory to
Application, 1e
Douglas Barrick (All
Chapters)

,Solution Manual


CHAPTER 1
1.1 Using the same Venn diagram for illustration, we want the probability of
outcomes from the two events that lead to the cross-hatched area shown
below:




A1 A1 n B2 B2


This represents getting A in event 1 and not B in event 2, plus not getting A
in event 1 but getting B in event 2 (these two are the common “or but not
both” combination calculated in Problem 1.2) plus getting A in event 1 and B in
event 2.

1.2 First the formula will be derived using equations, and then Venn diagrams
will be compared with the steps in the equation. In terms of formulas and
probabilities, there are two ways that the desired pair of outcomes can come
about. One way is that we could get A on the first event and not B on the
second ( A1 ∩ (∼B2 )). The probability of this is taken as the simple product, since
events 1 and 2 are independent:

pA1 ∩ (∼B2 ) = pA × p∼B
= pA ×(1− pB ) (A.1.1)
= pA − pApB

The second way is that we could not get A on the first event and we could get
B on the second ((∼ A1) ∩ B2 ) , with probability

p(∼A1) ∩ B2 = p∼A × pB
= (1− pA )× pB (A.1.2)
= pB − pApB

,2 SOLUTION MANUAL


Since either one will work, we want the or combination. Because the two ways
are mutually exclusive (having both would mean both A and ∼A in the first
outcome, and with equal impossibility, both B and ∼B), this or combination is
equal to the union { A1 ∩ (∼B2 )} ∪ {(∼ A1) ∩ B2}, and its probability is simply the sum
of the probability of the two separate ways above (Equations A.1.1 and A.1.2):

p{A1 ∩ (∼B2 )} ∪ {(~A1) ∩ B2} = pA1 ∩ (∼B2) + p(∼A1) ∩ B2
= pA − pApB + pB − pApB
= pA + pB − 2pApB

The connection to Venn diagrams is shown below. In this exercise we will work
backward from the combination of outcomes we seek to the individual outcomes.
The probability we are after is for the cross-hatched area below.
{ A1 ∩ (∼B2 )} ∪ {(∼ A1) ∩ B2 }




A1 B2


As indicated, the circles correspond to getting the outcome A in event 1 (left)
and outcome B in event 2. Even though the events are identical, the Venn
diagram is constructed so that there is some overlap between these two (which
we don’t want to include in our “or but not both” combination. As described
above, the two cross-hatched areas above don’t overlap, thus the probability of
their union is the simple sum of the two separate areas given below.


A1 n ~B2
~ A1 n B2

pA × p~B
p ~A × pB
= pA (1 – pB)
= (1 – p A)p B

A1 n ~B2 ~ A1 n B2



Adding these two probabilities gives the full “or but not both” expression
above. The only thing remaining is to show that the probability of each of
the crescents is equal to the product of the probabilities as shown in the top
diagram. This will only be done for one of the two crescents, since the other
follows in an exactly analogous way. Focusing on the gray crescent above, it
represents the A outcomes of event 1 and not the B outcomes in event 2. Each
of these outcomes is shown below:

Event 1 Event 2


A1 ~B

p~B = 1 – pB
pA



A1 ~B2

, SOLUTION MANUAL 3


Because sEvent s1 sand sEvent s2 sare sindependent, sthe s“and” scombination
sof sthese stwo soutcomes sis sgiven sby sthe sintersection, sand sthe
sprobability sof sthe
intersection sis sgiven sby sthe sproduct sof sthe stwo sseparate sprobabilities,
sleading sto sthe sexpressions sfor sprobabilities sfor sthe sgray scross-hatched
screscent.

(a) These sare stwo sindependent selementary sevents seach swith san
soutcome sprobability sof s0.5. sWe sare sasked sfor sthe sprobability sof
sthe ssequence sH1 sT2, swhich srequires smultiplication sof sthe
selementary sprobabilities:

p HH s = sH1 s∩ sT2 s= 1 s s s1 s1
= s s× s s=
spH s× spT
1 s2 1 2 2 s s2 4

We scan sarrange sthis sprobability, salong swith sthe sprobability sfor sthe
sother sthree spossible ssequences, sin sa stable:


Toss s1

Toss s2 H s(0.5) T s(0.5)

H s(0.5) H1H2 T1H2
(0.25) (0.25)

T s(0.5) H1T2 T1T2
(0.25) (0.25)

Note: sProbabilities sare sgiven sin sparentheses.

The sprobability sof sgetting sa shead son sthe sfirst stoss sor sa stail son sthe
ssecond stoss, sbut snot sboth, sis

pH1 sor sH2 s = spH1 s + spH2 s − s2( spH1 s× spH2 s)
1 s1 s1 s s1 ı
= + s − s2 × sı
2 2 2 ss s 2j
=s
s
1
s
2

In sthe stable sabove, sthis scombination scorresponds sto sthe ssum sof sthe
stwo soff- sdiagonal selements s(the sH1T2 sand sthe sT1H2 sboxes).

(b) This sis sthe s"and" scombination sfor sindependent sevents, sso swe
smultiply sthe selementary sprobability spH sfor seach sof sN stosses:

pH1H2H3…HN s = spH1 s× spH2 s× spH3 s×⋯× spHN
N
= s s1 s ı
s2ıj

This sis sboth sa spermutation sand sa scomposition s(there sis sonly sone
spermutation sfor sall-heads). sAnd snote sthat ssince sboth soutcomes
shave sequal sprobability s(0.5), sthis sgives sthe sprobability sof sany
spermutation sof sany snumber sNH sof sheads swith sany snumber sN s− sNH
sof stails.

1.3 Two sdifferent sapproaches swill sbe sgiven sfor sthis sproblem. sOne sis san
sapproximation sthat sis svery sclose sto sbeing scorrect. sThe ssecond sis
sexact. sBy scomparing sthe sresults, sthe sreasonableness sof sthe sfirst
sapproximation scan sbe sexamined.

Whichever sapproach swe suse sto ssolve sthis sproblem, swe sbegin sby
€16,35
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Testbankx Walden University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
42
Membre depuis
1 année
Nombre de followers
0
Documents
775
Dernière vente
17 heures de cela
Test Banks and Solution Manuals

At my shop, I specialize in offering high-quality Test Banks that are tailored to help students prepare effectively for exams. Each Test Bank is carefully selected and updated to ensure it aligns with the latest textbook editions, providing accurate and relevant content. My goal is to provide a reliable resource that enhances students' learning experience and boosts their academic performance.

4,9

172 revues

5
167
4
1
3
0
2
2
1
2

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions