Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

*****INSTANT DOWNLOAD*****Solution Manual Optical Networks 1st edition by Debasish Datta

Note
-
Vendu
-
Pages
33
Grade
A+
Publié le
29-10-2025
Écrit en
2025/2026

*****INSTANT DOWNLOAD*****Solution Manual Optical Networks 1st edition by Debasish DattaSolution Manual Optical Networks 1st edition by Debasish DattaSolution Manual Optical Networks 1st edition by Debasish DattaSolution Manual Optical Networks 1st edition by Debasish DattaSolution Manual Optical Networks 1st edition by Debasish Datta

Montrer plus Lire moins
Établissement
Optical Networks
Cours
Optical Networks











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Optical Networks
Cours
Optical Networks

Infos sur le Document

Publié le
29 octobre 2025
Nombre de pages
33
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

ALL 15 CHAPTER COVERED
c c c




SOLUTIONS MANUAL c

, Errata


Context Present version in the book
c c c c Corrected/changed version c




Page 130, Exercise 2.7
c c c 5.27 nm c 527 nm c




Page 248, expression for Gd
c c c c Gd = L/[2(M – 1) + L]
c c c c c c Gd = L/[2(M – 1 + L)]
c c c c c c




below Eq. 6.5.
c c




Page 572, Exercise 14.6.
c c c Γ = 0 24 40 50
c ccc c c c Γ = 0 50 25 60
c cc c c c




24 0 24 40 c c c 25 0 50 60 c c c




24 24 0 0 c c cc 25 30 0 30 c c c




50 0 40 0. cc c c 25 50 30 0. c c c




Page 593, Exercise 15.7
c c c 0.1 µs c 0.8 µs c




ii

, Exercise Problems and Solutions for Chapter 2 (Technologies for Optical Networks)
c c c c c c c c c c




2.1 A step-index multi-mode optical fiber has a refractive-index difference Δ = 1% and a
c c c c c c c c c c c c c




ccore refractive index of 1.5. If the core radius is 25 µm, find out the approximate number of
c c c c c c c c c c c c c c c c c




propagating modes in the fiber, while operating with a wavelength of 1300 nm.
c c c c c c c c c c c c c




Solution:
Δ = 0.01, n1 = 1.5, a = 25 μm, w = 1300 nm, and the2 number of modes Nmode is given by
c c c c c c c c c c c c c c c c c c c c c c c


𝐹𝐹 c



, with 𝐹𝐹 = 2𝜋𝜋𝑡𝑡
c




𝑁𝑁𝐴𝐴.
c c c cc c




𝑁𝑁𝑑𝑑𝑜𝑜𝑛𝑛𝑛𝑛 = cc c




The numerical aperture NA is obtained as
c
2 𝑠𝑠 c c c c c




1 2 1
2
𝑁𝑁𝐴𝐴 c = �𝑛𝑛2
−𝑛𝑛 ≈𝑛𝑛 √2∆ =1.5√0.02.c c
c

c c c c




Hence, we obtain V parameter as, c c c c c




2𝜋𝜋 × 25 × 10−6 c c c c
c




𝐹𝐹 = 1300 × 10−9 ×�1.5√0.02�= 25.632, c c c c c c




leading to the number of modes Nmode , given by c c c c c c c


≈ 329.
c c

c c



25.6322

𝑁𝑁𝑑𝑑𝑜𝑜𝑛𝑛𝑛𝑛 =
2
c




2.2 A step-index multi-mode optical fiber has a cladding with the refractive index of 1.45. If it has a
c c c c c c c c c c c c c c c c c




limiting intermodal dispersion of 35 ns/km, find its acceptance angle. Also calculate the maximum
c c c c c c c c c c c c c




c possible data transmission rate, that the fiber would support over a distance of 5 km.
c c c c c c c c c c c c c c




Solution:
The cladding refractive index n2 =1.45, and the intermodal dispersion Dmod = 35 ns/km. Dmod
c c c c c c c c c c c cc c c c c




is expressed as
𝑛𝑛1 − 𝑛𝑛2
c c c


c



𝑛𝑛1 𝑛𝑛1 − 𝑛𝑛2 = 35 ns/km. 𝑛𝑛1 Δ
c c

c c c c


= � �=
c c cc c c

c


𝐷𝐷𝑑𝑑𝑜𝑜𝑛𝑛 ≈ 𝑐𝑐 𝑐𝑐 𝑐𝑐
𝑛𝑛1 c




5 -9
Hence, (n1 – n2) = cDmod = (3 × 10 ) × (35 × 10 ) = 0.0105, and n1 = n2 + 0.0105 = 1.4605. Therefore,
c c c c c c c c c c c c c c c c c c c c c c c c




we obtain NA as
c c c




2 2 2 2

𝑁𝑁𝐴𝐴 = �𝑛𝑛1 − 𝑛𝑛2 = �1.4605 − 1.45 = 0.174815, cc c cc
ccc
c cc c c c




and the acceptance angle is obtained as θA = sin-1(NA) = sin-1(0.174815) = 10.068o.
c c c c c c c c c c c c c




The pulse spreading due to dispersion should remain ≤ 0.5/r, with r as the data-transmission rate,
c c c c c c c c c c c c c c c




cimplying that r ≤ 0.5/(Dmod L). Hence, we obtain the maximum possible data transmission rate rmax
c c c c c c c c c c c c c c c




cover L= 5 km as c c c c c




0.5

𝑝𝑑𝑑𝑡𝑡𝑚𝑚 = ccccc c


= 2.86 Mbps.
35 × 10−9 × 5
c c c
c
c c c c




2.3 Consider that a step-index multi-mode optical fiber receives optical power from a Lambertian c c c c c c c c c c c c




source with the emitted intensity pattern given by I(θ) = I0 cosθ, where θ is the angle subtended by an
c c c c c c c c c c c c c c c c c c c




c incident light ray from the source with the fiber axis. The total power emitted by the source is 1 mW
c c c c c c c c c c c c c c c c c c c




cwhile the power coupled into the fiber is found to be - 4 dBm. Derive the relation between
c c c c c c c c c c c c c c c c c




cthe

2.1

, launched power and the numerical aperture of the optical fiber. If the refractive index of the core is
c c c c c c c c c c c c c c c c c




c1.48, determine the refractive index of the cladding.
c c c c c c c




Solution:
Transmit power PT = 1 mW, and the power coupled into fiber PC = - 4 dBm = 10- 0.4 W = 0.3981 mW. For a
c c c c c c c c c c c c c c c c c c
c c

c c c c c




Lambertian source, the coupled power PC = NA2 × PT X (for derivation, see Cherin 1983). Hence,
c c c c c c c c
c

c c c c c c c c



𝑃𝑃𝐶𝐶
1 2 implying that n 22 = n 12 – PC/PT . c c c c c c


2 2 2
NA = PC/PT = 0.3981. Further, 𝑁𝑁𝐴𝐴 = 𝑛𝑛
c
ccc c



− 𝑛𝑛2 = 𝑃𝑃𝑇𝑇
c c c c c c c
cc



Thus, we obtain n2 as
c

c c c c




𝑛𝑛2 =√1.482 −0.3981=1.34. c
c
c
c c c




2.4 Consider a 20 km single-mode optical fiber with a loss of 0.5 dB/km at 1330 nm and 0.2 dB/km at 1550 c c c c c c c c c c c c c c c c c c c c




nm. Presuming that the optical fiber is fed with an optical power that is large enough to force the fiber
c c c c c c c c c c c c c c c c c c c c




ctowards exhibiting nonlinear effects, determine the effective lengths of the fiber in the two
c c c c c c c c c c c c c




coperating conditions. Comment on the results. c c c c c




Solution:
With L = 20 km, first we consider the case with fiber loss αdB = 0.5 dB/km. So, the loss α in neper/km
c c c c c c c c c c c c c c c c c c c c c c




is determined from αdB = 10log10[exp(α)] as
c c c c c c




α = ln (10αdB/10) = ln(100.05) = 0.1151.
c c c c c c c




Hence, we obtain the effective fiber length as
c c c c c c c




Lef f = [1 – exp(-αL)]/α c c cc c c




= [(1 – exp(-0.1151 × 20)]/0.1151 = 7.82 km.
c c c c c c c c




With αdB = 0.2 dB/km, we similarly obtain Lef f = 13.06 km, which is expected because with lower
c c c c c c c c c c c c c c c c c c




attenuation, the power decays slowly along the fiber and thus the fiber nonlinearity effects can take
c c c c c c c c c c c c c c c c




place over longer fiber length.
c c c c c




2.5 Consider an optical communication link operating at 1550 nm over a 60 km optical fiber having a c c c c c c c c c c c c c c c c




closs of 0.2 dB/km. Determine the threshold power for the onset of SBS in the fiber. Given: SBS gain
c c c c c c c c c c c c c c c c c c




ccoefficient gB = 5 ×10-11 m/W, effective area of cross-section of the fiber Aeff = 50 µm2, SBS c c c c c
c

c c c c c c c c c c c c c c c c




cbandwidth = 20 MHz, laser spectral width = 200 MHz. c c c c c c c c c




Solution:
With αdB = 0.2 dB/km at 1550 nm, we obtain α = ln (10αdB/10) = ln(100.02) = 0.0461. Hence, for
c c c c c c c c c c c c c c c c c c c




c L = 60 km, we obtain Lef f as
c c c c c c c ccc




Lef f = [1 – exp(-αL)]/α
c ccc c c c




= [1 – exp(-0.0461 × 60)]/0.0461 = 20.327 km.
c c c c c cc c c




With Aeff = 50 μm2, gB = 5 × 10-11 m/W, and assuming the polarization-matching factor to be ηp = 2, we
c c c c c c c c c
c

c c c c c c c c c c c




obtain the SBS threshold power as
c c c c c c




21 𝜂𝜂𝑜𝑜 𝐴𝐴𝑛𝑛𝑓𝑓𝑓𝑓 cc c
c
𝛿𝛿𝛿𝛿 21 × 2 × 50 × c c c c cc 200
�1 + c �= c
c10−12 �=22.73mW.
c c c




𝑃𝑃𝑡𝑡ℎ (𝑆𝑆𝐵𝐵𝑆𝑆) �1 +
𝑔𝑔𝐵𝐵 𝐵𝐵𝑛𝑛𝑓𝑓𝑓𝑓 5 × 10−11 × 20.327 × 103
c
c

Δ𝛿𝛿𝐵𝐵 c c
c
c c c
cc
20

c =
2.6 Consider an optical communication link operating at 1550 nm over a 60 km optical fiber having a c c c c c c c c c c c c c c c c




closs of 0.2 dB/km. The effective area of cross-section of the fiber Aeff = 50 µm2, where an optical
c c c c c c c c c c c c c c c c c c




cpower of 0 dBm is launched. Determine the nonlinear phase shift introduced by SPM in the fiber.
c c c c c c c c c c c c c c c c




2.2
€19,44
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
Smartscroll

Faites connaissance avec le vendeur

Seller avatar
Smartscroll Chamberlain College Of Nursing
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
5
Membre depuis
5 mois
Nombre de followers
1
Documents
2611
Dernière vente
1 mois de cela
NURSING

Welcome to your shortcut to academic and certification success. I'm SMARTSCROLL, a trusted top seller I specialize in high-quality study guides, test banks, certification prep, and real-world exam material all tailored to help you pass fast and score high. Popular categories includes; ✅Test banks and solution manual ✅Biology and Nursing ✅Business, Economics and Accounting ✅ATI and Hesi

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions