Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Math 225 Final Exam questions with answers.

Note
-
Vendu
-
Pages
11
Grade
A+
Publié le
19-10-2025
Écrit en
2025/2026

Math 225 Final Exam questions with answers.

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
19 octobre 2025
Nombre de pages
11
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Math 225 Final Exam questions with |\ |\ |\ |\ |\ |\




answers


If the columns of A are linearly dependent - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


✔✔Then the matrix is not invertible and an eigenvalue is 0
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\




Note that A−1 exists. In order for λ−1 to be an eigenvalue of
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


A−1, there must exist a nonzero x such that Upper A Superscript
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


negative 1 Baseline Bold x equals lambda Superscript negative 1
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Baseline Bold x . A−1x=λ−1x. Suppose a nonzero x satisfies
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Ax=λx. What is the first operation that should be performed on
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Ax=λx so that an equation similar to the one in the previous step
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


can be obtained? - CORRECT ANSWERS ✔✔Left-multiply both
|\ |\ |\ |\ |\ |\ |\ |\ |\


sides of Ax=λx by A−1. |\ |\ |\ |\




Show that if A2 is the zero matrix, then the only eigenvalue of A
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


is 0. - CORRECT ANSWERS ✔✔If Ax=λx for some x≠0, then
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


0x=A2x=A(Ax)=A(λx)=λAx=λ2x=0. Since x is nonzero, λ must |\ |\ |\ |\ |\ |\ |\


be zero. Thus, each eigenvalue of A is zero.
|\ |\ |\ |\ |\ |\ |\ |\




Finding the characteristic polynomial of a 3 x 3 matrix - CORRECT
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


ANSWERS ✔✔Add the first two columns to the right side of the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


matrix and then add the down diagonals and subtract the up
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


diagonals


In a simplified n x n matrix the Eigenvalues are - CORRECT
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


ANSWERS ✔✔The values of the main diagonal |\ |\ |\ |\ |\ |\

, Use a property of determinants to show that A and AT have the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


same characteristic polynomial - CORRECT ANSWERS ✔✔Start
|\ |\ |\ |\ |\ |\ |\


with detAT−λI)=detAT−λI)=det(A−λI)T. Then use the formula det
|\ |\ |\ |\ |\ |\ |\


AT=det A. |\




The determinant of A is the product of the diagonal entries in A.
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Select the correct choice below and, if necessary, fill in the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


answer box to complete your choice. - CORRECT ANSWERS
|\ |\ |\ |\ |\ |\ |\ |\ |\


✔✔The statement is false because the determinant of the
|\ |\ |\ |\ |\ |\ |\ |\ |\




2×2 matrix A= [ 1 1 (1 1 below) ] is not equal to the product of
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


the entries on the main diagonal of A.
|\ |\ |\ |\ |\ |\ |\




An elementary row operation on A does not change the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


determinant. Choose the correct answer below. - CORRECT |\ |\ |\ |\ |\ |\ |\ |\


ANSWERS ✔✔The statement is false because scaling a row also
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


scales the determinant by the same scalar factor.
|\ |\ |\ |\ |\ |\ |\




(det A)(det B)=detAB. Select the correct choice below and, if
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


necessary, fill in the answer box to complete your choice. -|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


CORRECT ANSWERS ✔✔The statement is true because it is the
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\


Multiplicative Property of determinants. |\ |\ |\




If λ+5 is a factor of the characteristic polynomial of A, then 5 is
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


an eigenvalue of A. Select the correct choice below and, if
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


necessary, fill in the answer box to complete your choice. -|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


CORRECT ANSWERS ✔✔The statement is false because in order
|\ |\ |\ |\ |\ |\ |\ |\ |\


for 5 to be an eigenvalue of A, the characteristic polynomial
|\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\


would need to have a factor of λ−5.
|\ |\ |\ |\ |\ |\ |\
€19,47
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
EXAMSTUDYPLUG Stanford University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
305
Membre depuis
3 année
Nombre de followers
107
Documents
18112
Dernière vente
8 heures de cela
GRADE BUDDY

Welcome to My Page! Are you looking for high-quality study resources to ace your exams or better understand your coursework? You've come to the right place! I'm passionate about sharing my knowledge and helping students succeed academically. Here, you'll find a wide range of well-organized notes, study guides, and helpful materials across various subjects, including Maths ,nursig, Biology, History, etc.. Each resource is carefully crafted with detailed explanations, clear examples, and relevant key points to help simplify complex concepts. Whether you're preparing for a test, reviewing lectures, or need extra support, my resources are designed to make your learning experience smoother and more effective. Let me be a part of your academic journey, and feel free to reach out if you have any questions or need personalized assistance!

Lire la suite Lire moins
4,5

230 revues

5
155
4
50
3
13
2
5
1
7

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions