Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solution Manual for Optical Networks, 1st Edition by Debasish Datta | Complete Answers and Explanations

Note
-
Vendu
-
Pages
46
Grade
A+
Publié le
07-10-2025
Écrit en
2025/2026

INSTANT PDF DOWNLOAD — This comprehensive solution manual for Optical Networks, 1st Edition by Debasish Datta, provides detailed, step-by-step solutions to all end-of-chapter questions and numerical problems. It covers essential concepts such as optical fiber transmission, wavelength-division multiplexing (WDM), optical amplifiers, network design, routing, protection, and performance analysis. Each solution includes clear derivations, diagrams, and explanations to reinforce theoretical understanding and practical application. Ideal for electrical engineering, telecommunications, and computer networking students, this guide helps learners master optical communication principles and prepare for exams or research projects. #OpticalNetworks #DebasishDatta #SolutionManual #TelecommunicationEngineering #FiberOptics #WDM #OpticalAmplifiers #NetworkDesign #EngineeringStudents #ComputerNetworking #LightwaveTechnology #DataTransmission #ExamPrep #CommunicationSystems #OpticalCommunication #StudyGuide #ElectricalEngineering #NetworkPerformance #TelecomSystems #TextbookSolutions

Montrer plus Lire moins
Établissement
Optical Networks
Cours
Optical Networks











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Optical Networks
Cours
Optical Networks

Infos sur le Document

Publié le
7 octobre 2025
Nombre de pages
46
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

ALL 15 CHAPTER COVERED




SOLUTIONS MANUAL

, Errata


Context Present version in the book Corrected/changed version

Page 130, Exercise 2.7 5.27 nm 527 nm

Page 248, expression for Gd Gd = L/[2(M – 1) + L] Gd = L/[2(M – 1 + L)]
below Eq. 6.5.

Page 572, Exercise 14.6. Γ = 0 24 40 50 Γ = 0 50 25 60
24 0 24 40 25 0 50 60
24 24 0 0 25 30 0 30
50 0 40 0. 25 50 30 0.

Page 593, Exercise 15.7 0.1 µs 0.8 µs




ii

, Exercise Problems and Solutions for Chapter 2 (Technologies for Optical Networks)


2.1 A step-index multi-mode optical fiber has a refractive-index difference Δ = 1% and a core
refractive index of 1.5. If the core radius is 25 µm, find out the approximate number of propagating
modes in the fiber, while operating with a wavelength of 1300 nm.
Solution:
Δ = 0.01, n1 = 1.5, a = 25 μm, w = 1300 nm, and the number of modes Nmode is given by
𝐹𝐹 2
, with 𝐹𝐹 = 2𝜋𝜋𝑡𝑡
𝑁𝑁𝐴𝐴.
𝑁𝑁𝑑𝑑𝑜𝑜𝑛𝑛𝑛𝑛 =
The numerical aperture NA is obtained as 2 𝑠𝑠


1 2 1
𝑁𝑁𝐴𝐴= �𝑛𝑛2 2
− 𝑛𝑛 ≈ 𝑛𝑛 √2∆ = 1.5√0.02.
Hence, we obtain V parameter as,
2𝜋𝜋 × 25 × 10−6

𝐹𝐹 = 1300 × 10−9 × �1.5√0.02� = 25.632,
leading to the number of modes Nmode , given by
≈ 329.
25.6322

𝑁𝑁𝑑𝑑𝑜𝑜𝑛𝑛𝑛𝑛 =
2
2.2 A step-index multi-mode optical fiber has a cladding with the refractive index of 1.45. If it has a
limiting intermodal dispersion of 35 ns/km, find its acceptance angle. Also calculate the maximum
possible data transmission rate, that the fiber would support over a distance of 5 km.
Solution:
The cladding refractive index n2 =1.45, and the intermodal dispersion Dmod = 35 ns/km. Dmod is
expressed as
𝑛𝑛1 − 𝑛𝑛2
𝑛𝑛1 Δ 𝑛𝑛1 𝑛𝑛1 − 𝑛𝑛2 = 35 ns/km.
= �=
𝐷𝐷𝑑𝑑𝑜𝑜𝑛𝑛 ≈ 𝑐𝑐
� 𝑛𝑛1 𝑐𝑐
𝑐𝑐
Hence, (n1 – n2) = cDmod = (3 × 105) × (35 × 10-9) = 0.0105, and n1 = n2 + 0.0105 = 1.4605. Therefore,
we obtain NA as
2 2 2 2

𝑁𝑁𝐴𝐴 = �𝑛𝑛1 − 𝑛𝑛2 = �1.4605 − 1.45 = 0.174815,
and the acceptance angle is obtained as θA = sin-1(NA) = sin-1(0.174815) = 10.068o.
The pulse spreading due to dispersion should remain ≤ 0.5/r, with r as the data-transmission rate,
implying that r ≤ 0.5/(Dmod L). Hence, we obtain the maximum possible data transmission rate rmax
over L = 5 km as
0.5

𝑝𝑑𝑑𝑡𝑡𝑚𝑚 =
= 2.86 Mbps.
35 × 10−9 × 5
2.3 Consider that a step-index multi-mode optical fiber receives optical power from a Lambertian
source with the emitted intensity pattern given by I(θ) = I0 cosθ, where θ is the angle subtended by an
incident light ray from the source with the fiber axis. The total power emitted by the source is 1 mW
while the power coupled into the fiber is found to be - 4 dBm. Derive the relation between the

2.1

, launched power and the numerical aperture of the optical fiber. If the refractive index of the core is
1.48, determine the refractive index of the cladding.
Solution:
Transmit power PT = 1 mW, and the power coupled into fiber PC = - 4 dBm = 10- 0.4 W = 0.3981 mW.
For a Lambertian source, the coupled power PC = NA2 × PT X (for derivation, see Cherin 1983). Hence,
𝑃𝑃𝐶𝐶
1 2 implying that n 22 = n12 – PC/PT .
2 2
NA = PC/PT = 0.3981. Further, 𝑁𝑁𝐴𝐴 = 𝑛𝑛 2
− 𝑛𝑛2 = 𝑃𝑃𝑇𝑇
Thus, we obtain n2 as


𝑛𝑛2 = √1.482 − 0.3981 = 1.34.
2.4 Consider a 20 km single-mode optical fiber with a loss of 0.5 dB/km at 1330 nm and 0.2 dB/km at
1550 nm. Presuming that the optical fiber is fed with an optical power that is large enough to force the
fiber towards exhibiting nonlinear effects, determine the effective lengths of the fiber in the two
operating conditions. Comment on the results.
Solution:
With L = 20 km, first we consider the case with fiber loss αdB = 0.5 dB/km. So, the loss α in neper/km
is determined from αdB = 10log10[exp(α)] as
α = ln (10αdB/10) = ln(100.05) = 0.1151.
Hence, we obtain the effective fiber length as
Lef f = [1 – exp(-αL)]/α
= [(1 – exp(-0.1151 × 20)]/0.1151 = 7.82 km.
With αdB = 0.2 dB/km, we similarly obtain Lef f = 13.06 km, which is expected because with lower
attenuation, the power decays slowly along the fiber and thus the fiber nonlinearity effects can take
place over longer fiber length.
2.5 Consider an optical communication link operating at 1550 nm over a 60 km optical fiber having a
loss of 0.2 dB/km. Determine the threshold power for the onset of SBS in the fiber. Given: SBS gain
coefficient gB = 5 ×10-11 m/W, effective area of cross-section of the fiber Aeff = 50 µm2, SBS
bandwidth = 20 MHz, laser spectral width = 200 MHz.
Solution:
With αdB = 0.2 dB/km at 1550 nm, we obtain α = ln (10αdB/10) = ln(100.02) = 0.0461.
Hence, for L = 60 km, we obtain Lef f as
Lef f = [1 – exp(-αL)]/α
= [1 – exp(-0.0461 × 60)]/0.0461 = 20.327 km.
With Aeff = 50 μm2, gB = 5 × 10-11 m/W, and assuming the polarization-matching factor to be ηp = 2, we
obtain the SBS threshold power as
21 𝜂𝜂𝑜𝑜 𝐴𝐴𝑛𝑛𝑓𝑓𝑓𝑓 �1 + 𝛿𝛿𝛿𝛿 � = 21 × 2 × 50 × 10−12 200� = 22.73 mW.

𝑃𝑃𝑡𝑡ℎ (𝑆𝑆𝐵𝐵𝑆𝑆) = �1 +
𝑔𝑔𝐵𝐵 𝐵𝐵𝑛𝑛𝑓𝑓𝑓𝑓 Δ𝛿𝛿𝐵𝐵 5 × 10−11 × 20.327 × 103 20

2.6 Consider an optical communication link operating at 1550 nm over a 60 km optical fiber having a
loss of 0.2 dB/km. The effective area of cross-section of the fiber Aeff = 50 µm2, where an optical
power of 0 dBm is launched. Determine the nonlinear phase shift introduced by SPM in the fiber.
Given: ñ(ω) = 2.6 × 10-20 m2/W.



2.2
€17,67
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
NurseCelestine Chamberlain College Of Nursing
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
108
Membre depuis
1 année
Nombre de followers
28
Documents
5221
Dernière vente
19 heures de cela
Nurse Celestine Study Hub

Welcome! I’m Nurse Celestine, your go-to source for nursing test banks, solution manuals, and exam prep materials. My uploads cover trusted textbooks from top nursing programs — perfect for NCLEX prep, pharmacology, anatomy, and clinical courses. Study smarter, not harder!

4,4

312 revues

5
203
4
40
3
57
2
5
1
7

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions