Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solution Manual for A First Course in Differential Equations with Modeling Applications 12th Edition by Dennis Zill

Note
-
Vendu
-
Pages
795
Grade
A+
Publié le
20-09-2025
Écrit en
2025/2026

This Solution Manual provides complete, step-by-step solutions for all problems in A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis Zill. It is a valuable companion for students and instructors, offering clear and detailed explanations that strengthen problem-solving skills and ensure full understanding of concepts. Covers all chapters and exercises from the 12th Edition Step-by-step solutions for differential equations and modeling applications Supports self-study, exam preparation, and homework guidance Ideal for students, instructors, and tutors This manual is an excellent resource for mastering differential equations with modeling applications.

Montrer plus Lire moins
Établissement
Equations With Modeling
Cours
Equations with Modeling











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Equations with Modeling
Cours
Equations with Modeling

Infos sur le Document

Publié le
20 septembre 2025
Nombre de pages
795
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual are
included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024, 9780357760192; CHAPTER
#1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ......................................................................................................................................................................... 1
Exercises 1.1 ................................................................................................................................................................................................... 1
Exercises 1.2 ................................................................................................................................................................................................. 14
Exercises 1.3 ................................................................................................................................................................................................. 22
Chapter 1 in Review Solutions .................................................................................................................................................. 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx) or 2
1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y because of
y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linear in v.
However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
13. From y = e− x/2
we obtain yj = — 1 e− x/2
. Then 2yj + y = —e− x/2
+ e− x/2 = 0.
2




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6
14. From y = — e—20t we obtain dy/dt = 24e−20t , so that
5 5
dy + 20y = 24e−20t 6 6 −20t
+ 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x, so that yjj
— 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j 1/2−
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 —x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is not defined at x
= —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have
j
y = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An- other interval is
(π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From y j =
2x/(4 — x2)2 we have
1 2
= 2xy2.
yj = 2x
4 — x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter- vals are (—∞,
—2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11 — sin x)2 −3/2 (— cos x) we have

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another one is (5π/2,
9π/2), and so on.




2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing Wln(2X W — W 1) W — W ln(X W — W 1) W W = W W t Wand Wdifferentiating x

implicitly W we W obtain 4


— = W1 2
2X W— W1 W dt X W— W1 W dt
t
2 1 dX W W – W4 –2 2 4
— = W1
2X W— W1 X W— W1 dt
–2


– W4
dX
= W—(2X W— W1)(X W— W1) W= W(X W— W1)(1 W— W2X).
dt W

Exponentiating W both W sides W of W the W implicit W solution W we W obtain

2X W— W1 W
=
t W X W—
We
W1


2X W — W1 W= WXet W — Wet

(et W — W1) W= W(et W — W2)X
et 1
X W= W .
et W — W2 W
Solving Wet W — W2 W = W 0 Wwe W get Wt W = W ln W2. W Thus, Wthe W solution Wis Wdefined W on W(—∞, Wln W2) W or Won W(ln
W2, W∞). W The W graph W of W the W solution W defined W on W (—∞, Wln W2) W is W dashed, W and W the W graph W of W the

W solution W defined W on W (ln W 2, W ∞) W is W solid.



22. Implicitly W differentiating W the W solution, W we W obtain y

2 W W dy dy 4

—2x W W — W4xy W+ W2y W = W0
dx W dx W 2
—x2 W dy W— W2xy Wdx W+ Wy Wdy W= W0
x
2xy Wdx W+ W(x2 W — Wy)dy W= W0. –4 –2 2 4


Using Wthe Wquadratic W formula W to Wsolve Wy2 W W — W 2x2y W — W 1 W W= W W 0 –2
√W √W
for Wy, Wwe Wget Wy W = 2x2 W W 4x4 W +2W4 W W /2 4W
± x + W1W.
W W= Wx –4
±
√W
Thus, Wtwo Wexplicit Wsolutions Ware Wy1 W W = W x2 x4 W + W1 W and
W
+
√W W
y2 W W = W x2 W W — x4 W + W 1 W. W Both W solutions W are W defined W on W (—∞, W∞).
The W graph W of W y1(x) W is W solid W and W the W graph W of W y2 W W is W dashed.


3
€15,30
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
StudyMuse Chamberlain College Of Nursing
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
73
Membre depuis
4 mois
Nombre de followers
6
Documents
1637
Dernière vente
4 jours de cela
`Trusted Nursing Resources for top marks

High quality nursing notes , summaries , and exam guides. Accurate , concise , and exam focused to help nursing students pass with confidence.

3,3

12 revues

5
5
4
0
3
3
2
1
1
3

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions