Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

COS4861 Assignment 3 (COMPLETE ANSWERS) 2025 - DUE 10 September 2025; 100% correct solutions and explanations.

Note
-
Vendu
-
Pages
19
Grade
A+
Publié le
04-09-2025
Écrit en
2025/2026

COS4861 Assignment 3 (COMPLETE ANSWERS) 2025 - DUE 10 September 2025; 100% correct solutions and explanations.COS Assignment 3 - [65 points] ## Working towards encoding systems in NLP. —------------------------------------------------------------------------------------------------------------------------ Due date: 10 September 2025 Year: 2025 Author: Dr Dongmo Cyrille, Mr Thapelo Sindane Contact: or —------------------------------------------------------------------------------------------------------------------------ You will learn how to: - define various encoding techniques (N-grams, ), and smoothing algorithms - build tokenizers, and N-grams models, Note 1: This assignment is designed to make you understand the fundamentals behind corpus-based Natural Language Processing (NLP) and various techniques applied for preprocessing, analysing, and generating insights from text such as word would, tokenization, and creating encoding systems. This is in no way a definitive list of examples, but the basic components you need to get started. Introduction Use the below corpus to answer the questions that follow. The assignment is divided into three section: - Theory based question - Critical thinking and understanding - And application / code [should be in python] The corpus “” When data are noisy, it’s our job as data scientists to listen for signals so we can relay it to someone who can decide how to act. To amp up how loudly hidden signals speak over the noise of big and/or volatile data, we can deploy smoothing algorithms, which though traditionally used in time-series analyses, also come into their own when applied on other sequential data. Smoothing algorithms are either global or local because they take data and filter out noise across the entire, global series, or over a smaller, local series by summarizing a local or global domain of Y, resulting in an estimation of the underlying data called a smooth. The specific smoother you use depends on your analysis’ goal and data quirks, because as we’ll see below, there are trade-offs to consider. Below are a few options, along with their intuition, limitations, and formula so you can rapidly evaluate when and why to use one over the other. “” Question 1 [12 points] - Theory 1) What is a corpus ? and how does it differ from other data types ? (2) 2) What is the technical term for splitting a corpus into different linguistic units such as paragraphs, sentences, and words in NLP (1) 3) Define N-grams and provide references from peer-reviewed articles (2) 4) Describe the problem of data sparseness with regards to

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
4 septembre 2025
Nombre de pages
19
Écrit en
2025/2026
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

, COS4861 Assignment 3 (COMPLETE ANSWERS) 2025
- DUE 10 September 2025; 100% correct solutions and
explanations.
QUESTION 1

1) What is a corpus, and how does it differ from other data types?

A corpus is a large, structured, and electronically stored collection of authentic
linguistic data, usually in the form of written texts or transcribed speech, that is
compiled for the purpose of linguistic analysis or natural language processing
(NLP). It is designed to represent language use as naturally as possible and
provides researchers with empirical evidence of how language is used in real
contexts. Corpora may be general (covering many topics and genres) or specialized
(focusing on a particular domain, register, or variety of language).

A corpus differs from other data types in several ways:

 Authenticity: Unlike artificial or constructed examples, corpora consist of
naturally occurring language samples.
 Structure: Corpora are systematically organized, annotated, and often
tagged with linguistic metadata (e.g., part-of-speech tags, syntactic
structures).
 Size: Corpora are usually large-scale, making them more representative of
language patterns than small anecdotal examples or intuition-based data.
 Machine-readability: They are stored in electronic form and are accessible
for computational analysis using NLP tools.
 Comparability: Unlike general datasets, corpora are specifically designed to
allow linguistic comparison across genres, registers, dialects, or time
periods.

Thus, while general data types may include numbers, images, or arbitrary text
collections, a corpus is unique in being a linguistically informed dataset created for
systematic study of language.



2) What is the technical term for splitting a corpus into different linguistic
units such as paragraphs, sentences, and words in NLP?
€2,43
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
MasterVincent University of South Africa (Unisa)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
2569
Membre depuis
2 année
Nombre de followers
452
Documents
1529
Dernière vente
2 jours de cela
MasterVincent

On this page, you find all documents, package deals, and flashcards offered by seller MasterVincent.

4,1

379 revues

5
206
4
69
3
51
2
24
1
29

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions