Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Full summary and solved exam questions of the entire Advanced Data Analysis course – University of Antwerp

Note
-
Vendu
-
Pages
72
Publié le
12-08-2025
Écrit en
2024/2025

This summary is a complete and up-to-date collection covering the entire Advanced Data Analysis course, including fully solved exam questions, combining: A detailed and clearly structured summary of all theoretical lectures, based on official slides, additional professor explanations, and relevant course materials. Fully worked-out solutions to all available previous exam questions, carefully checked and improved. Corrected and optimized solutions to the take-home assignment (Academic Year 2022/2023). Complete notes and solutions from the practical lessons. All explanations are written in clear academic English, with step-by-step reasoning where needed, making this bundle the ideal preparation for both the open-book exam and all course assignments. Chapters/Topics included: Introduction to Data & Data Mining Processing Principles Unsupervised Clustering Principal Component Analysis (PCA) & t-SNE Supervised Learning Regression Machine Learning Methods Why this document stands out: Based on the most recent academic year. Combines lecture notes, summaries, previous exams, and assignments in one comprehensive file. Created with great attention to clarity, completeness, and accuracy. Proven exam success — high grades achieved using these materials. Perfect for any student aiming for an efficient, well-structured, and high-scoring preparation.

Montrer plus Lire moins











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
12 août 2025
Nombre de pages
72
Écrit en
2024/2025
Type
Resume

Aperçu du contenu

Full summary of the course
Advanced Data Analysis (theoretical
lessons)

geschreven door

Bi0med




www.stuvia.com

Gedownload door: cynthiavervoort | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

, Stuvia - Koop en Verkoop de Beste Samenvattingen




ADVANCED DATA ANALYSIS
CHAPTER 1: INTRODUCTION 18/02

1.1 BIG DATA
Data for which conventional computer techniques are not sufficient anymore due to size,
complexity.. It is a disruptive trend in computer sciences. Characterised by:

1. Volume 2. Velocity 3. Variety 4. Veracity

Fourth paradigm: for thousands of years we had experimental and observable science, later there
was theoretical science (Newton, formulas…). Then the raise of computer science occurred to
simulate things such as weather forecasts. Now new time of data-driven science where data is the
breeding ground of the science we are doing. You first look at what data is already out there: re-
analyse data.

1. DATA VOLUME
An unprecedented amount of information is coming towards us. For example genomics information
is huge, while the cost of sequencing genomes has gone down tremendously. Computer power is
roughly doubling every 18 months for the same price: faster computers, bigger hard drives. We have
to learn new ways to deal with this big amounts of data.

2. DATA VELOCITY
The speed at which data is generated and the speed at which we need to analyse it. If we sequence a
lot of genomes we can take our times to analyse the genomes and publish it, but some data (such as
sensors) need to be processed immediately.

Also transporting data is a bottleneck: takes too long. Often hard drives are transported, which is
more efficient than internet availability and fibers. Data can be sent from China to here by hard
drives instead of through the internet.

Dynamic molecules profiles can now also be sequenced and analysed, for example by sequencing the
immune system, which is changing constantly. This data is therefore preferably processed instantly,
to know the status of patients in real time.

3. DATA VARIETY
A lot of data in biomedical sciences is heterogenous and unstructured. Most data is based on
literature you need to read, also unstructured image data (just pixels). We estimate that 80% of the
world’s data is structured and also very diverse: DNA sequences, protein structures, gene regulation,
interactions, morphology, metabolism… This data is all heterogenous: difficult to deal with this much
diversity.

4. DATA VERACITY
= trustworthiness of data. There is a lot of uncertainty about data points. This uncertainty is not
consistent: you can’t make a standard deviation of every data point in big data because the




Gedownload door: cynthiavervoort | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

, Stuvia - Koop en Verkoop de Beste Samenvattingen




uncertainty is varying. Some data points are highly certain, some are very solid, some are missing,
also bias…



1.2 WHAT IS DATA?
Data is the collection of data objects and their attributes. The object can be
patients, samples, observations,.. Attributes are properties / characteristics
of the object. This will often be represented in a tablet data format where
you have rows for objects and columns for attributes.

Attributes ≠ attribute values
- Attribute values = numbers/symbols assigned to an attribute
o E.g. attribute = eye colour, attribute values = green, blue,
brown
- Distinction between attributes & attribute values
- The same attribute can be mapped to different attribute values


DIFFERENT TYPES OF ATTRIBUTES
1. Nominal attributes: E.g. ID numbers, eye colour, zip codes
2. Ordinal attributes: E.g. rankings (e.g. 1-10), grades, height in tall/medium/short
3. Interval attributes: E.g. calendar dates, temperatures in Celsius or Fahrenheit
4. Ratio attributes: E.g. temperature in Kelvin, length, time, counts

The type of an attribute is based on the type of mathematical operations you can execute on these?
It depends on which of the following properties it possesses:
- Distinctness: =
o Two attributes equal or not Nominal Distinctness
- Order: <>
o You can order them, and it makes sense Ordinal Distinctness & order

- Addition: +-
Interval Distinctness, order & addition
o You can add or subtract values from the
attributes
Ratio All 4 properties
- Multiplication: * /
o You can multiply & divide the attributes


DISCRETE VS. CONTINUOUS ATTRIBUTES
Discrete attribute: have only a finite or countable set of values. They are often represented as
integer variables, for example zip codes, counts, or the set of words in a collection of documents.

Continuous attribute: has real numbers as attribute value. Practically, real values can only be
measured and represented using a finite number of digits but continuous attributes are typically
represented as floating-point variables. For example temperature, height, or weight.




Gedownload door: cynthiavervoort | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

, Stuvia - Koop en Verkoop de Beste Samenvattingen




1.3 DATASET TYPES
1. Record: data matrix, document data, transaction data
2. Graph: www, protein interactions
3. Ordered: spatial data, temporal data, sequential data, molecular sequences


1. RECORD DATA
= data that consists of a collection of records, each of which consists of a fixed set of attributes.

DATA MATRIX:
If data objects have the same fixed set of numeric attributes, then the data can be thought of as
points in a multi-dimensional space, where each dimension represents a distinct attribute. Such data
set can be represented by an m by n matrix, where there are m rows (objects), and n columns
(attributes). For example a blood sample with for every gene a readout of how much transcript is in
the sample. This is a fixed set of columns for every observation. Every blood sample might have
20.000 attributes, then this blood sample is a point in a space of 20.000 dimensions: high-
dimensional data.


DOCUMENT DATA:
= text data. Every document, for example paper that you have
read becomes a row, and every column is a term attribute and
the number of times this attribute is present in the document.

- Each document becomes a `term' vector
- Each term is a component (attribute) of the vector

The value of each component is the number of times the corresponding term occurs in the
document. You can summarize/translate each document into a list of term abunances: used for
document classification. With a bit of machine learning you can distinct a piece of a poem from a
patient record.


TRANSACTION DATA:
A special type of record data, where each record (column)
corresponds to a transaction that consists of a series of items. For
example, a grocery store. The set of products purchased by a
customer during one shopping trip constitute a transaction, while the
individual products that were purchased are the items.




Gedownload door: cynthiavervoort | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lemmeslodders Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
280
Membre depuis
4 année
Nombre de followers
134
Documents
413
Dernière vente
3 semaines de cela
Biomedische Wetenschappen: Zelfgemaakte samenvattingen, Uitgewerkte oude examenvragen en de beste Notities

Wij verkopen hier al onze zelfgemaakte samenvattingen, notities en uitgewerkte oude examenvragen voor alle vakken van de richting Biomedische Wetenschappen aan UAntwerpen (zowel voor de volledige Bachelor opleiding &amp; alle Master opleidingen). Onze collectie bestaat uit een ruim assortiment van zeer uitgebreide samenvattingen van lessen, hoorcolleges, boeken, PowerPoints, slides, oefensessies, seminaries, practicum, verslagen, assignments, voorbeeld examenvragen en uitgewerkte (oude) examenvragen. Met vermeldingen tussenin van wat de prof belangrijk vindt &amp; wat zeker op het examen komt. Wij hebben telkens geschrapt wat is weggevallen en aangeduid wat overbodige leerstof is en dus nooit op het examen komt. Onze collectie bevat alles wat je nodig hebt om te kunnen slagen op jouw examens (met een minimum score van 15/20). Zodat jij met een gerust hart de Blok overleeft &amp; Dit alles voor een eerlijke prijs!!! :))

Lire la suite Lire moins
4,2

32 revues

5
15
4
12
3
3
2
1
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions