Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Full summary and solved exam questions of the entire Advanced Data Analysis course – University of Antwerp

Note
-
Vendu
-
Pages
109
Publié le
12-08-2025
Écrit en
2024/2025

This summary is a complete and up-to-date collection covering the entire Advanced Data Analysis course, including fully solved exam questions, combining: A detailed and clearly structured summary of all theoretical lectures, based on official slides, additional professor explanations, and relevant course materials. Fully worked-out solutions to all available previous exam questions, carefully checked and improved. Corrected and optimized solutions to the take-home assignment (Academic Year 2022/2023). Complete notes and solutions from the practical lessons. All explanations are written in clear academic English, with step-by-step reasoning where needed, making this bundle the ideal preparation for both the open-book exam and all course assignments. Chapters/Topics included: Introduction to Data & Data Mining Processing Principles Unsupervised Clustering Principal Component Analysis (PCA) & t-SNE Supervised Learning Regression Machine Learning Methods Why this document stands out: Based on the most recent academic year. Combines lecture notes, summaries, previous exams, and assignments in one comprehensive file. Created with great attention to clarity, completeness, and accuracy. Proven exam success — high grades achieved using these materials. Perfect for any student aiming for an efficient, well-structured, and high-scoring preparation.

Montrer plus Lire moins











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
12 août 2025
Nombre de pages
109
Écrit en
2024/2025
Type
Resume

Aperçu du contenu

Summary Advanced Data Analysis

geschreven door

UA-BiomedischeWetenschappen




www.stuvia.com




Gedownload door: jitseopdebeeck1 | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

, Stuvia - Koop en Verkoop de Beste Samenvattingen




CHAPTER 1: INTRODUCTION

A bit of context
Big data revolution
= a revolution of information technology that is affecting industries around the globe. It has a
radically changing impact on a lot of domains in the world
= a disruptive trend in computer sciences

Big data
= data for which conventional computer-techniques are not sufficient anymore due to size,
complexity, …
= characterized by:

1. Data volume
a. data is collected everywhere
b. evolution to cloud: data is stored in clouds where it can be approached anywhere in
the world (not captured on a physical computer anymore)
c. the cost to sequence the genome is really decreasing: it becomes affordable

2. Data velocity
a. Is the speed at which data is being generated (= enormous)
b. Data is generated continuously: e.g. a smartphone is collecting
a lot of data all the time (light sensor, barometer,…)
c. Data management gap: IT staff didn’t grow as fast as data did
d. Dynamic molecular profiles: we are able to do transcriptome
profiling, sequencing the immune system, microbiome,…

! The sequencing facility and the data analysis facility are separated from each other with 1
km à what’s the most appropriate way to send the information from data analysis to the
sequencing facility? à you would think: a network, cloud,… but in fact it is a bicycle (you can
transfer a lot of hardware with a lot of TB)

3. Data variety
a. A huge diversity of data type: DNA sequences, protein structures, gene regulation,
interactions, morphology, metabolism
b. A lot of this data is heterogeneous and unstructured (e.g. text)

4. Data veracity (waarheidsgetrouw)
a. To what extent can we trust the things we see? How certain are we about things?

à Is big data a reality in life sciences? Yes (volume P - verlocity P - variety P - veracity P)




1
Gedownload door: jitseopdebeeck1 | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

, Stuvia - Koop en Verkoop de Beste Samenvattingen




Emergence of a fourth research paradigm
We have doing science for a long time – we have gone through 4 different paradigms:

1. Experimental science
a. Thousand years ago
b. Description of natural phenomena

2. Theoretical science
a. Last few hundred years
b. Newton’s laws, Maxwell’s equations,…

3. Computational science
a. Last few decades
b. Simulation of complex phenomena

4. Data-intensive science
a. Today
b. A lot of things we study we don’t study them anymore from simple observations as
we did in the past but we start from a lot of data
c. Scientists overwhelmed with data sets from many different sources
i. Data captured by instruments
ii. Data generated by simulations
iii. Data generated by sensor networks

d. eScience is the set of tools and technologies to support data federation and
collaboration
i. for analysis and data mining
ii. for data visualization and exploration
iii. for scholarly communication and dissemination


But what is data?

- Collection of data objects and their attributes

- An attribute is a property or characteristic of an object
o Examples: eye color of a person, temperature, etc
o An attribute describes an object
o Attribute is also known as variable, field, characteristic,
or feature

- A collection of attributes describes an object
o Examples: individuals,…


2
Gedownload door: jitseopdebeeck1 | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

, Stuvia - Koop en Verkoop de Beste Samenvattingen




o Object is also known as record, point, case, sample, entity, or instance

SO: Each row is an object – for each of these objects we have a series of attributes (characteristics)
® These objects and attributes are the base of a lot of data we have


Attribute values

Attribute values are numbers or symbols assigned to an attribute
- Example: eye color (attribute) can be blue, green, brown,… (attribute values)

- Distinction between attributes and attribute values
o Same attribute can be mapped to different attribute values
§ Example: height can be measured in feet or meters

o Different attributes can be mapped to the same set of values
§ Example: attribute values for ID and age are integers

o However, properties of attribute values can still be different
§ Example: ID has no limit but age has a maximum and minimum value


Attribute types

There are different types of attributes:
- Nominal
o Examples: ID numbers, eye color, zip codes à categorical attribute
o You cannot do a real comparison

- Ordinal
o Examples: rankings (e.g. taste of potato chips on a scale from 1-10)-, grades, height
in tall, medium, short
o Which you can rank

- Interval
o Examples: calendar dates, temperatures in Celsius or Fahrenheit
o Which you can do subtractions with à we know both the order and the exact
difference
o There is ‘no zero’ – can go below 0

- Ratio
o Examples: temperature in Kelvin, length, time, counts
o Which you can do divisions, multiplications with
o There is a ‘true zero’ – can’t go below 0




3
Gedownload door: jitseopdebeeck1 | Wil jij €76 per
Dit document is auteursrechtelijk beschermd, het verspreiden van dit document is strafbaar. maand verdienen?

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lemmeslodders Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
280
Membre depuis
4 année
Nombre de followers
134
Documents
413
Dernière vente
3 semaines de cela
Biomedische Wetenschappen: Zelfgemaakte samenvattingen, Uitgewerkte oude examenvragen en de beste Notities

Wij verkopen hier al onze zelfgemaakte samenvattingen, notities en uitgewerkte oude examenvragen voor alle vakken van de richting Biomedische Wetenschappen aan UAntwerpen (zowel voor de volledige Bachelor opleiding & alle Master opleidingen). Onze collectie bestaat uit een ruim assortiment van zeer uitgebreide samenvattingen van lessen, hoorcolleges, boeken, PowerPoints, slides, oefensessies, seminaries, practicum, verslagen, assignments, voorbeeld examenvragen en uitgewerkte (oude) examenvragen. Met vermeldingen tussenin van wat de prof belangrijk vindt & wat zeker op het examen komt. Wij hebben telkens geschrapt wat is weggevallen en aangeduid wat overbodige leerstof is en dus nooit op het examen komt. Onze collectie bevat alles wat je nodig hebt om te kunnen slagen op jouw examens (met een minimum score van 15/20). Zodat jij met een gerust hart de Blok overleeft & Dit alles voor een eerlijke prijs!!! :))

Lire la suite Lire moins
4,2

32 revues

5
15
4
12
3
3
2
1
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions