Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Full summary and solved exam questions of the entire Advanced Data Analysis course – University of Antwerp

Note
-
Vendu
-
Pages
16
Grade
9-10
Publié le
12-08-2025
Écrit en
2024/2025

This summary is a complete and up-to-date collection covering the entire Advanced Data Analysis course, including fully solved exam questions, combining: A detailed and clearly structured summary of all theoretical lectures, based on official slides, additional professor explanations, and relevant course materials. Fully worked-out solutions to all available previous exam questions, carefully checked and improved. Corrected and optimized solutions to the take-home assignment (Academic Year 2022/2023). Complete notes and solutions from the practical lessons. All explanations are written in clear academic English, with step-by-step reasoning where needed, making this bundle the ideal preparation for both the open-book exam and all course assignments. Chapters/Topics included: Introduction to Data & Data Mining Processing Principles Unsupervised Clustering Principal Component Analysis (PCA) & t-SNE Supervised Learning Regression Machine Learning Methods Why this document stands out: Based on the most recent academic year. Combines lecture notes, summaries, previous exams, and assignments in one comprehensive file. Created with great attention to clarity, completeness, and accuracy. Proven exam success — high grades achieved using these materials. Perfect for any student aiming for an efficient, well-structured, and high-scoring preparation.

Montrer plus Lire moins










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
12 août 2025
Nombre de pages
16
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

iltivariate
How Cuments
Instruchon
Pollution
Dataset ments Theory
Mining ta

to
copy
Statistics
your

graph




metagenomics
Featurebacterial A
O Question4 Question
metagenomics O principle
A 3"None what
Sample Question
A 2 should
forestbe: The
Sample O O O O O O O O Study
None Model Value NoneDetect
Transform Group Assign The The The The
is O0B O0B CVOut-or-Bag
OOB
families. the
collected accuracy
of of
50 50 50 50t-test,
outliers samplescomponent
a of and and acCuracy
the these new identifñed identified possible
identified
bin these identified
the we CV CV
above experiment (00B)
corresponds An answers sample hnd 1000 accuracy
accuracyshould
in data into answers should
unsupervised a features pitfall
features features
features 50
dataset spaceclusters analysis biomedical performance
to features be
are a are of shouldshould lower be
with to this
to known may may may lower
correct based
so can correct may
70 minimize
a:data
that that
analysisfeatures alwaysalways (or
patients class
be be behave have (or of
on false false equal)
analysis used are a
a the the that different athat be be
equal) random
supervised variance to: negatives
positives high
sign1ficantly from
has different the than
variance represents
variance may than
is
been two same O0B forest
performed means make CV
within distinct because becausebecause
"binned single with different compared
most the
class a a
using response group results patient CV
into between a it
of accounts part only
model is its to
this 15D0 variance incorrect? groups. of the
averages
binned variablesmaller the Cross
distinct the for training
than two Each overfitting Validatton
the
data.
categories, that groupsgroup performance
In data
this between contained
ata and set (CV)
subsequentwhich signiicance does
OOBnot win performance
groups oe of
correspond 300 rneido0t single
patients.
analysis, level decision
of
of the
to 5%.It
each we trees same
various
However do
a random
two

, between Question
An 8
foQuestion
r In 7
ONone O O
O When
Question 6
importance
Highest w Widestimportant
Gini BasedLargest None They patient
The They OThey clinical a O O
When When When O it
the Whenyou
of ofreasoning
are is is
onGinimargin are
can diagnosis always a
these different part these setting, there there crosS-validation
the
bootstrapping easier solve less
impurity of apply
accuracy necessary
answers anSwers prone are are
between behind
toproblems there
training
classes. even few few
train the
difference to of
training classifier
are theoverfitting. if isa variables the for
areaggregation classes they
tendency
Onthe classification that evaluating
correct correct classifher
what
classifiers are have samples to
not somewhat to validation
basis is the
(bagging) linearly prefer suficiently
that is performance
is easier data
the make decision
lower
of most separable.
to high that
the up interpret. accuracy. tree was of
data optimal a
random notsupervised a
classification
set Why in
split/decision the
forest
might training
classifier
is models
deciding this
set
boundary be? unnecessary?
to
what support

chosen?
variables Selebs
vector
Indepodent
dafrseh.
to machines
use
to
spl1t or
neural
the
dataset networks

,
" Question11
Deep learning
Question
Deephas 10 the V The
Question9
V w2.
auto-encoderUsingsamples
Using
many these of
NoneprobabilisticIt
is It It constant
outcome
the b the y featurethweight
ex1 thew2 decision
weightthew1 x2
All strategies
None Confirming
learning
of can Ittransforms uses +
feature x2
of the account b=0.
hidden
the above
methods boundary
the Which
above
answers
correct
are for produced
the layers
performance
are feature
complex parameters of
possible avoid a
hard
overftting space superior
patterns margin
with are
with
a classifiers learned
cross-validation kernels support
by

because by
thvector
e
support
machine

vector
based
machine
on
two
from
features
the
training (x1,
x2)
data? Is
given

by
an
equation


Wl.
x1+

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
lemmeslodders Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
280
Membre depuis
4 année
Nombre de followers
134
Documents
414
Dernière vente
3 semaines de cela
Biomedische Wetenschappen: Zelfgemaakte samenvattingen, Uitgewerkte oude examenvragen en de beste Notities

Wij verkopen hier al onze zelfgemaakte samenvattingen, notities en uitgewerkte oude examenvragen voor alle vakken van de richting Biomedische Wetenschappen aan UAntwerpen (zowel voor de volledige Bachelor opleiding & alle Master opleidingen). Onze collectie bestaat uit een ruim assortiment van zeer uitgebreide samenvattingen van lessen, hoorcolleges, boeken, PowerPoints, slides, oefensessies, seminaries, practicum, verslagen, assignments, voorbeeld examenvragen en uitgewerkte (oude) examenvragen. Met vermeldingen tussenin van wat de prof belangrijk vindt & wat zeker op het examen komt. Wij hebben telkens geschrapt wat is weggevallen en aangeduid wat overbodige leerstof is en dus nooit op het examen komt. Onze collectie bevat alles wat je nodig hebt om te kunnen slagen op jouw examens (met een minimum score van 15/20). Zodat jij met een gerust hart de Blok overleeft & Dit alles voor een eerlijke prijs!!! :))

Lire la suite Lire moins
4,2

32 revues

5
15
4
12
3
3
2
1
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions