Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Note
-
Vendu
2
Pages
664
Grade
A+
Publié le
20-06-2025
Écrit en
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Établissement
Solution Manual For A First Course In Differential
Cours
Solution Manual For A First Course in Differential











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Solution Manual For A First Course in Differential
Cours
Solution Manual For A First Course in Differential

Infos sur le Document

Publié le
20 juin 2025
Nombre de pages
664
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Exercises 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Exercises 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Chapter 1 in Review Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)
p
5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y 2 = 1, we see that it is nonlinear
in y because of y 2 . However, writing it in the form (y 2 − 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v . However, writing it in the form (v + uv − ueu )(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain y ′ = − 12 e−x/2 . Then 2y ′ + y = −e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 −20t
14. From y = − e we obtain dy/dt = 24e−20t , so that
5 5
 
dy −20t 6 6 −20t
+ 20y = 24e + 20 − e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain y ′ = 3e3x cos 2x−2e3x sin 2x and y ′′ = 5e3x cos 2x−12e3x sin 2x,
so that y ′′ − 6y ′ + 13y = 0.
16. From y = − cos x ln(sec x + tan x) we obtain y ′ = −1 + sin x ln(sec x + tan x) and
y ′′ = tan x + cos x ln(sec x + tan x). Then y ′′ + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [−2, ∞). From y ′ = 1+2(x+2)−1/2
we have

(y − x)y ′ = (y − x)[1 + (2(x + 2)−1/2 ]

= y − x + 2(y − x)(x + 2)−1/2

= y − x + 2[x + 4(x + 2)1/2 − x](x + 2)−1/2

= y − x + 8(x + 2)1/2 (x + 2)−1/2 = y − x + 8.

An interval of definition for the solution of the differential equation is (−2, ∞) because y ′ is
not defined at x = −2.
18. Since tan x is not defined for x = π/2 + nπ , n an integer, the domain of y = 5 tan 5x is
{x 5x 6= π/2 + nπ}
or {x x 6= π/10 + nπ/5}. From y ′ = 25 sec2 5x we have

y ′ = 25(1 + tan2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (−π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 − x2 6= 0} or {x x 6= −2 or x 6= 2}. From y ′ =
2x/(4 − x2 )2 we have
 2
1

y = 2x = 2xy 2 .
4 − x2
An interval of definition for the solution of the differential equation is (−2, 2). Other inter-
vals are (−∞, −2) and (2, ∞).

20. The function is y = 1/ 1 − sin x , whose domain is obtained from 1 − sin x 6= 0 or sin x 6= 1.
Thus, the domain is {x x =6 π/2 + 2nπ}. From y ′ = − 12 (1 − sin x)−3/2 (− cos x) we have

2y ′ = (1 − sin x)−3/2 cos x = [(1 − sin x)−1/2 ]3 cos x = y 3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.


2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X − 1) − ln(X − 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
− =1 2
2X − 1 dt X − 1 dt
 
2 1 dX t
− =1 –4 –2 2 4
2X − 1 X − 1 dt
–2
2X − 2 − 2X + 1 dX
=1
(2X − 1) (X − 1) dt
–4
dX
= −(2X − 1)(X − 1) = (X − 1)(1 − 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X − 1
= et
X −1
2X − 1 = Xet − et

(et − 1) = (et − 2)X

et − 1
X= .
et − 2

Solving et − 2 = 0 we get t = ln 2. Thus, the solution is defined on (−∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (−∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

dy dy 4
−2x2 − 4xy + 2y =0
dx dx
2
−x2 dy − 2xy dx + y dy = 0
x
2xy dx + (x2 − y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y 2 − 2x2 y − 1 = 0
√  √
for y , we get y = 2x2 ± 4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 − x4 + 1 . Both solutions are defined on (−∞, ∞).
The graph of y1 (x) is solid and the graph of y2 is dashed.




3
€11,36
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
CorrectSCORE Havard School
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
85
Membre depuis
6 mois
Nombre de followers
2
Documents
1209
Dernière vente
1 jours de cela
correctSORE HUB

Welcome to correctSCORE, your trusted partner for premium study guides, test banks, and exam prep resources designed to help you learn, master, and achieve. Learning to Become isn’t just a slogan, it’s our mission. We believe every student deserves clear, reliable study support to become the best version of themselves, academically and professionally. Verified test banks for top textbooks and exams, Detailed practice questions with rationales Whether you’re studying Nursing, Pharmacology, Radiography, Business or Health Sciences, we’re here to help you learn smarter, score higher, and become more confident. Explore our library, download instantly, and start Learning to Become today.

Lire la suite Lire moins
3,6

9 revues

5
3
4
3
3
1
2
0
1
2

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions