Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Test Bank for Introduction to Algorithms and Data Structures (1st Edition, Cengage) – Multiple-Choice Question Answers - 9780357673560

Note
-
Vendu
-
Pages
120
Grade
A+
Publié le
02-06-2025
Écrit en
2024/2025

Test Bank for Introduction to Algorithms and Data Structures, 1st Edition – Introduction to Algorithms and Data Structures First Edition Test Bank. This test bank offers a complete set of multiple-choice questions with answers for Introduction to Algorithms and Data Structures (1st Edition, Cengage, ISBN: 9780357673560). It covers foundational topics such as arrays, linked lists, stacks, queues, trees, graphs, recursion, sorting, and searching algorithms. Designed for students in computer science and programming courses, this resource supports exam prep, quizzes, and concept reinforcement.

Montrer plus Lire moins
Établissement
Algorithms And Data Structures
Cours
Algorithms and Data Structures











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Algorithms and Data Structures
Cours
Algorithms and Data Structures

Infos sur le Document

Publié le
2 juin 2025
Nombre de pages
120
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

TEST BANK
INTRODUCTION TO ALGORITHMS AND DATA STRUCTURES
1ST EDITION
CHAPTER NO. 1. RECURSION
1. What is the base case for a recursive function to compute xn?
a. x = 0
b. n = 0
c. xn = 0
d. x = 1
ANSWER: b
FEEDBACK: a. Incorrect. The first structure required in recursion is the base case, the
case in which the function will no longer call itself. For a recursive
function that computes xn, the base case is n = 0 (not x = 0). The base
case is determined by the value of n, not x.
b. Correct. The first structure required in recursion is the base case, the
case in which the function will no longer call itself. For a recursive
function that computes xn, the base case is n = 0.
c. Incorrect. The first structure required in recursion is the base case, the
case in which the function will no longer call itself. For a recursive
function that computes xn, the base case is n = 0 (not xn = 0). The base
case is determined by the value of n, not x.
d. Incorrect. The first structure required in recursion is the base case, the
case in which the function will no longer call itself. For a recursive
function that computes xn, the base case is n = 0 (not x = 1). The base
case is determined by the value of n, not x.
POINTS: 1
DIFFICULTY: Introductory
REFERENCES: Introduction to Recursion
QUESTION TYPE: Multiple Choice
HAS VARIABLES: False
LEARNING OBJECTIVES: IADS.CENG.24.1.1.1 - Describe the use of recursion in defining the power of a
number.
KEYWORDS: Bloom's: Understand


2. In tail recursion, which command in the function is the recursive call?
a. the first one
b. the last one

, c. the one with the base case condition
d. the one that is the sum of two terms
ANSWER: b
FEEDBACK: a. Incorrect. In tail recursion, the last (not the first) command in the
function is the recursive call. The returned value in the recursive
call case is only the recursive function.
b. Correct. In tail recursion, the last command in the function is the
recursive call. The returned value in the recursive call case is only
the recursive function.
c. Incorrect. In tail recursion, the last command in the function is the
recursive call, not the one with the base case condition. The base
case condition leads to a stopping point, not a recursive call.
d. Incorrect. In tail recursion, the last command in the function is the
recursive call. The returned value in the recursive call case is only
the recursive function. The function may or may not contain a
command that is the sum of two terms.
POINTS: 1
DIFFICULTY: Introductory
REFERENCES: Introduction to Recursion
QUESTION TYPE: Multiple Choice
HAS VARIABLES: False
LEARNING OBJECTIVES: IADS.CENG.24.1.1.2 - Recall the conditions of well-defined recursive functions
and procedures.
KEYWORDS: Bloom's: Remember


3. If recursion is not well-defined, it has no stopping case and will eventually result in a stack overflow error.
a. True
b. False
ANSWER: True
FEEDBACK: Correct Well-defined recursion is a term used to describe a recursive
algorithm that reaches an end state in a finite time and returns
the same value every time it is used. If recursion is not well-
defined, it has no stopping case and will eventually result in a
stack overflow error.
Incorrect Well-defined recursion is a term used to describe a recursive
algorithm that reaches an end state in a finite time and returns
the same value every time it is used. If recursion is not well-
defined, it has no stopping case and will eventually result in a
stack overflow error.

,POINTS: 1
DIFFICULTY: Intermediate
REFERENCES: Introduction to Recursion
QUESTION TYPE: True / False
HAS VARIABLES: False
LEARNING OBJECTIVES: IADS.CENG.24.1.1.3 - Associate the condition of well-defined recursion with a
stack overflow error.
KEYWORDS: Bloom's: Understand


4. What is the base case for a recursive function to compute n! (factorial of n)?
a. n2 = 1
b. n = 2
c. n = 1
d. n = 0
ANSWER: d
FEEDBACK: a. Incorrect. The base case for a recursive function to compute n! (factorial
of n) is n = 0 (not n2 = 1). The factorial of a non-negative integer n,
usually written as “n!”, is the product of all positive integers less than n.
Calculating the factorial of an integer does not involve squaring it.
b. Incorrect. The base case for a recursive function to compute n! (factorial
of n) is n = 0 (not n = 2). If n = 2, calculating the factorial of n will
require recursion: n * factorial(n - 1).
c. Incorrect. The base case for a recursive function to compute n! (factorial
of n) is n = 0 (not n = 1). If n = 1, calculating the factorial of n will
require recursion: n * factorial(n - 1).
d. Correct. The base case for a recursive function to compute n! (factorial
of n) is n = 0. The factorial of a non-negative integer n, usually written
as “n!”, is the product of all positive integers less than n.
POINTS: 1
DIFFICULTY: Introductory
REFERENCES: Introduction to Recursion
QUESTION TYPE: Multiple Choice
HAS VARIABLES: False
LEARNING OBJECTIVES: IADS.CENG.24.1.1.4 - Describe the relationship between recursion and the divide-
and-conquer strategy of problem-solving.
KEYWORDS: Bloom's: Understand


5. How many recursive calls are made in a recursive algorithm computing the Fibonacci sequence for n = 3?

, a. 3
b. 4
c. 5
d. 6
ANSWER: b
FEEDBACK: a. Incorrect. It requires 4 recursive calls, not 3. For a recursive function
fib, fib(3) calls fib(2) and fib(1). fib(2) calls fib(1) and fib(0). The base
cases are n = 0 and n = 1, and making two recursive calls to the function
is necessary to compute a single number.
b. Correct. It requires 4 recursive calls. For a recursive function fib, fib(3)
calls fib(2) and fib(1). fib(2) calls fib(1) and fib(0). The base cases are n
= 0 and n = 1, and making two recursive calls to the function is
necessary to compute a single number.
c. Incorrect. It requires 4 recursive calls, not 5. For a recursive function
fib, fib(3) calls fib(2) and fib(1). fib(2) calls fib(1) and fib(0). The base
cases are n = 0 and n = 1, and making two recursive calls to the function
is necessary to compute a single number.
d. Incorrect. It requires 4 recursive calls, not 6. For a recursive function
fib, fib(3) calls fib(2) and fib(1). fib(2) calls fib(1) and fib(0). The base
cases are n = 0 and n = 1, and making two recursive calls to the function
is necessary to compute a single number.
POINTS: 1
DIFFICULTY: Introductory
REFERENCES: Introduction to Recursion
QUESTION TYPE: Multiple Choice
HAS VARIABLES: False
LEARNING OBJECTIVES: IADS.CENG.24.1.1.5 - Describe the use of tail recursion in recursive functions and
procedures.
KEYWORDS: Bloom's: Remember


6. Which term describes a recursive algorithm that reaches an end state in a finite time and returns the same
value every time it is used?
a. tail recursion
b. infinite recursion
c. well-defined recursion
d. stack overflow recursion
ANSWER: c
€21,98
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
docusity Nyc Uni
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
1203
Membre depuis
1 année
Nombre de followers
132
Documents
1298
Dernière vente
1 jours de cela

4,5

186 revues

5
133
4
29
3
15
2
1
1
8

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions