,Inhoud
Reële functies.......................................................................................................................................................................4
Grafische voorstelling functies+ kenmerken....................................................................................................................4
even en oneven functies..................................................................................................................................................4
punt – en lijnsymmetrie: het soort symmetrie afleiden uit de grafische voorstelling................................................4
Veeltermfuncties..............................................................................................................................................................5
Ontbinden in factoren..................................................................................................................................................5
afgeleiden.........................................................................................................................................................................6
a) Verandering van een veeltermfunctie.....................................................................................................................6
b) Ogenblikkelijke verandering/ afgeleide in een punt...............................................................................................8
c) Afgeleide van een veeltermfunctie..........................................................................................................................9
Som-, en productregel...............................................................................................................................................10
e) Verloopschema en tekenschema (stijgen/dalen/extrema/nulpunten) van de afgeleide functie van een
veeltermfunctie..........................................................................................................................................................11
Exponentiële functies.....................................................................................................................................................12
a) Kenmerken exponentiele functies: domein, beeld, extrema, stijgen/dalen, asymptoten...................................12
b) Het verschil tussen lineaire en exponentiele groei ▪ In tabellen:..........................................................................12
c) Groeifactor berekenen= a......................................................................................................................................13
d) Exponentiele vergelijkingen oplossen...................................................................................................................13
e) Vraagstukken oplossen..........................................................................................................................................14
Logaritmische functies...................................................................................................................................................14
verschil tussen exponentiele en logaritmische functies:...........................................................................................14
Tiendelig of briggse logaritme...................................................................................................................................15
Natuurlijke of neperiaanse logaritme.......................................................................................................................15
a) Rekenregels van logaritmen toepassen.................................................................................................................15
b) Logaritmische vergelijkingen oplossen..................................................................................................................17
c) Het verband tussen exponentiele en logaritmische functies................................................................................17
Goniometrische functies................................................................................................................................................18
De hoeken in graden en radialen (vanbuiten kennen + met GRM)...........................................................................18
b) Verwante hoeken en hun goniometrische getallen: sinus, cosinus, tangens.......................................................19
De sinusfunctie: grafische voorstelling en kenmerken (domein, bereik, periodiciteit, nulwaarden,
extremawaarden, stijgen en dalen)...........................................................................................................................22
C) De algemene sinusfunctie:....................................................................................................................................23
e) sinusvergelijkingen oplossen.................................................................................................................................25
2
,Statistiek.............................................................................................................................................................................25
Soorten variabelen.........................................................................................................................................................25
Kwalitatief..................................................................................................................................................................25
Kwantitatief................................................................................................................................................................26
De normaalverdeling en de standaardafwijking en de klokcurve, vuistregels, z-score.................................................26
De z-score.......................................................................................................................................................................27
standaardafwijking berekenen.......................................................................................................................................29
Examenvragen....................................................................................................................................................................29
07/01/2019.....................................................................................................................................................................29
Digitale deel...............................................................................................................................................................30
Schriftelijke deel.........................................................................................................................................................31
Filmpjes alle leerstof...........................................................................................................................................................32
Reële functies.................................................................................................................................................................32
Eerstegraadsfuncties......................................................................................................................................................32
Tweedrgraadsfuncties....................................................................................................................................................32
Tweedegraadsvergelijkingen..........................................................................................................................................32
Veeltermfuncties............................................................................................................................................................32
Differentiequotiënt.........................................................................................................................................................32
Afgeleiden van veeltermfuncties...................................................................................................................................33
Exponentiële functies.....................................................................................................................................................33
Logaritmische functies...................................................................................................................................................33
Goniometrische functies................................................................................................................................................33
Goniometrische vergelijkingen......................................................................................................................................34
Statistiek.........................................................................................................................................................................34
Normale verdeling..........................................................................................................................................................34
Proefexamen.......................................................................................................................................................................35
Verbetersleutel proefexamen............................................................................................................................................41
Algemene tips.......................................................................................................................................................................3
Verloop examen....................................................................................................................................................................3
Bibliografie............................................................................................................................................................................3
Eindwoord.............................................................................................................................................................................3
SAMENVATTING
3
, REËLE FUNCTIES
GRAFISCHE VOORSTELLING FUNCTIES+ KENMERKEN
Domein: intervalnotatie, de x-waarden waarvoor er functiewaarden bestaan
Beeld/bereik: intervalnotatie, de oplossingen voor de x-waarden
Nulpunten: de x-waarden waarbij de functiewaarden nul zijn
Extremawaarden:
o maximum (M): het hoogst gedefinieerde Y-waarde van de functie f
Minimum (m): het laagst definieerde y-waarden van de functie f
Stijgen/dalen: de functie stijgt, of de functie daalt
Constante verloop: het functie blijft constant
Tekenverandering van een functie: de functiewaarden zijn groter dan nul indien de
functie boven de X-as is, en negatief indien de functie onder de X-as is.
EVEN EN ONEVEN FUNCTIES
PUNT – EN LIJNSYMMETRIE: HET SOORT SYMMETRIE AFLEIDEN UIT DE GRAFISCHE VOORSTELLING
Even functies: functies waarvan de grafiek symmetrisch is t.o.v. de y-as
F(-x)= f(x) bv. F(x)=x2
4