Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Note
-
Vendu
-
Pages
1000
Grade
A+
Publié le
04-04-2025
Écrit en
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Établissement
First Course In Differential Equations With Modeli
Cours
First Course in Differential Equations with Modeli











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
First Course in Differential Equations with Modeli
Cours
First Course in Differential Equations with Modeli

Infos sur le Document

Publié le
4 avril 2025
Nombre de pages
1000
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

A First Course in Differential
Qi Qi Qi Qi Qi




Equations with Modeling App Qi Qi Qi




lications, 12th Edition by Den
Qi Qi Qi Qi




nis G. Zill Qi Qi




Complete Chapter Solutions Manual ar
Qi Qi Qi Qi




e included (Ch 1 to 9)
Qi Qi Qi Qi Qi




** Immediate Download
Qi Qi




** Swift Response
Qi Qi




** All Chapters included
Qi Qi Qi

,SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1:




Solution and Answer Guide Qi Qi Qi




ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
Qi Qi Qi Qi Qi Qi Qi


9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS Qi Qi Qi Qi Qi Qi




TABLE OF CONTENTS QI QI




End of Section Solutions ..................................................................................................................................... 1
Qi Qi Qi



Exercises 1.1 ........................................................................................................................................................ 1
Qi



Exercises 1.2 ......................................................................................................................................................14
Qi



Exercises 1.3 ......................................................................................................................................................22
Qi



Chapter 1 in Review Solutions ...................................................................................................................... 30
Qi Qi Qi Qi




END OF SECTION SOLUTIONS
QI QI QI




EXERCISES 1.1 QI




1. Second order; linear Q i Q i


4
2. Third order; nonlinear because of (dy/dx)
Qi Qi Qi Qi Qi



3. Fourth order; linear Qi Qi



4. Second order; nonlinear because of cos(r + u)
Qi Qi Qi Qi Qi Qi Qi


5. Second order; nonlinear because of (dy/dx)2 or
Qi Qi Qi Qi Qi Qi 1 + (dy/dx)2
Qi Qi

2
6. Second order; nonlinear because of R Qi Qi Qi Qi Qi



7. Third order; linear Qi Qi


2
8. Second order; nonlinear because of ẋ Qi Qi Qi Qi Qi



9. First order; nonlinear because of sin (dy/dx)
Qi Qi Qi Qi Qi Qi



10. First order; linear Qi Qi


2
11. Writing the differential equation in the form x(dy/dx) + y = 1, we see that it is nonlin
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


ear in y because of y . However, writing it in the form (y —
2 2
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


1)(dx/dy) + x = 0, we see that it is linear in x.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


u
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ue we see that it
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


is linear in v. However, writing it in the form (v + uv —
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


ueu)(du/dv) + u = 0, we see that it is nonlinear in u.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi



FromQiyQi=Qie− QiweQiobtainQiyjQi=Qi—Qi1Qe −x/2.QiThenQi2yjQi+QiyQi=Qi—e−x/2Qi+Qie−x/2Qi=Qi0.
x/2 i
13. 2

,SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1:


66 —
14. From y = Qi Qi — e we obtain dy/dt = 24e
Qi Qi Qi Qi , so that
Qi Qi

5 5
QiQi
dy −20t 6 6 Qi

— −20t
5 Qi

e
3x
15. From y = e cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


12e sin 2x, so that yjj — 6yj + 13y = 0.
3x
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

j
16. From y = — Qi Qi Qi = —1 + sin x ln(sec x + tan x) and
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

cos x ln(sec x + tan x) we obtain y
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

jj
y Q i = tan x + cos x ln(sec x + tan x). Then y
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Q i + y = tan x.
Qi Qi Qi Qi



17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−
1/2
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


we have Qi



j −
—x)y = (y — x)[1 + (2(x + 2)
Q i Qi Qi Qi Qi Qi Qi Qi ]
−1/2
= y — x + 2(y —
Qi Qi Qi Qi Qi Qi




−1/2
= y — x + 2[x + 4(x + 2)1/2 —
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi




= y — x + 8(x + 2)1/2
Qi Qi Qi Qi Qi Qi Qi
−1/2Q i =QiyQ i —QixQi+Qi8.


An interval of definition for the solution of the differential equation is (—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


2, ∞) because yj is not defined at x = —2.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi



18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi Qi Qi


{x Q i Q i 5x /= π/2 + nπ}Qi Qi Qi Qi



or {x Qi
Q i
x /= π/10 + nπ/5}. From jy = 25 s2ec 5x we have
Qi Qi Qi Qi Qi Qi Q i Qi Qi Q i Qi Qi




2 2 2
y .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An-
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


other interval is (π/10, 3π/10), and so on.
Qi Qi Qi Qi Qi Qi Qi Qi



19. The domain of the function is {x 4 — x /= 0} or {x
Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi x /= —
Q i Q i


2 or x /= 2}. From y = 2x/(4 — x2)2 we have
Qi Qi Q i Q i Qi Qi Q i Qi Qi Qi Qi Qi


Q i Q i 1
yj = 2xQi Qi Q i = 2xy2.
Qi
2

4 — x2
Qi Qi



An interval of definition for the solution of the differential equation is (—
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


2, 2). Other inter- vals are (—∞, —2) and (2, ∞).
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi


Thus, the domain is {x x /= π/2 + 2nπ}. From y = —
Qi Qi
2
(1 — sin x) (— cos x) we have Qi Qi Q i Qi Qi Qi Qi Qi Qi Qi Qi Q i Qi Qi Qi Qi Qi Qi Qi




2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi




An interval of definition for the solution of the differential equation is (π/2, 5π/2). Anoth
Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi Qi

, SolutionQiandQiAnswerQiGuide:QiZill,QiDIFFERENTIALQiEQUATIONSQiWithQiMODELINGQiAPPLICATIONSQi2024,Qi9780357760192;QiChapterQi
#1: erQioneQiisQi(5π/2,Qi9π/2),QiandQisoQion.
€15,74
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Profkarl Oxford University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
76
Membre depuis
1 année
Nombre de followers
7
Documents
466
Dernière vente
1 semaine de cela

2,7

12 revues

5
3
4
0
3
4
2
0
1
5

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions