Thermo ’Heat classifca ton
dynamics’?nmoion (to fuw) OBased on amount ot mattr pvesentinsi
Limitatons
Mac-nsopie Systom OMicasio pie sy sem
)4 law s of TO ae applicablef r ’lection of lage
macroscopic system onl 0o ot toms or mole des
) dos not give into about in a syste
at ofrn|base d on no ofphaes o e t
3)
Paroametert
mechansnofnJ Homgeos
Here on by one phase is
ort ofo rese ohich is unde TD
Consickrion SBase on type of bound y
eg- bo:ling of water ?n an open contairtr close d
’he wter is Sysstem open
Heqt exhange a)
SuTtoundi ngs haat exç hagt
Porton of the niree uwhich is not under
mater er Change (w)
Satels,
TO consiclesa torn 4eg.' Human , AnimaJ.
bonfe mobile phart
Buundam solate d
Real aad ov îmaginay waIl cohich seperats egi- nitse, Tea kpt
System fom the suasouning matter exchayeX nthees
heat exchange
Real Snaging +TO cqwlibium
bein TO wiakum
a systen is said to
ztit ext io followng 3eq
Re OTerma
Temptmainy Cont dt=0,T>o
Mechoani cal
loessut gemaln conyt. p o, Po
THpe -2) chamicaJ (Dynami)
fexible
Rsid
sie boundg TO PaPotiey
CaDloL JCoo tlo
movale piston oExtensit:- Tis prvpeties ey'ends wpo
Puantity of matter o ma ss ov site of iyste
Adlthemi eg:- Mass, volume, length Ata,mol s,
Diathenic (non Conduey IE , Cibbs free e n ,hgl mholt hee eneayi
conduety) chane
day not
Sntensie:- Porfetieaclapend on Puaiy
oonifer of heateny Hea toayfer t tenior
is qllowe)
h le negy iS
nut q l e e
, e-f,v, Tee, tU, (e) (A), Posiion
Pah tuneton:. vale cderendsA path folowe d Exo thee
w4 m only Path fune ton Heat ’random tom of Enes
Poo PeHes of staBe functton
Path funcion. Process
Depends Path of System Jsobaic dpo
Ex:-Work , Heat
Tsochoic ’ dv =0
dw
Jsothermal’ oT=0
Small amt of
wokdone Adiabetc’ dq, =o
Energy
EnergykE +P-E +Jat-Engy. State func ’o.
Totl wgTlklone oor k of expansion
enegE) Energy Cu)
for Gas wz- [Pert dv
unitJoule
1 Jowe = 0 er
work of expn ; VzV
ley l·G02 XI0J work ofcompr: V,< V
SV<o
w-ve
Jnternal Enersy (u) whofcomor
+ P¬ Systen
Engy Cu] (Ro todt vib
CutlTv] +tranyl +elettn [rmoleaubr
atoe, e-Nu
+ ossic ] t (heatis added )
tunc.oftemg] Ccist .depend
clockwis e =-ve
Chunc.ofvo]. Antt -clockis e
e=+Ve
CONST Temp Const. Vo ).
wo
’Its a state funchon R0.02| Latm-! mol
’Extensive PooPery =.314 3k mol
’ qUsolute vale cant be
ealeulaed 2caU k-! nol?
Latn lol. 32s 3