Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill

Note
-
Vendu
4
Pages
545
Grade
A+
Publié le
20-02-2025
Écrit en
2024/2025

Solution Manual For A First Course in Differential Equations with Modeling Applications, 12th Edition Dennis G. Zill PDF DOWNLOAD

Établissement
SM+TB
Cours
SM+TB











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
SM+TB
Cours
SM+TB

Infos sur le Document

Publié le
20 février 2025
Nombre de pages
545
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

A First Course in Differential
Equations with Modeling
Applications, 12th Edition by
Dennis G. Zill




Complete Chapter Solutions Manual are
included (Ch 1 to 9)




** Immediate Download
** Swift Response
** All Chapters included

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO




Introduction to Differential Equations S O S O S O




SolutionandAnswerGuide O
S O
S O
S




ZILL,DIFFERENTIALEQUATIONSWITHMODELINGAPPLICATIONS2024, 9780357760192;
O
S O
S O
S O
S O
S O
S S O O
S




CHAPTER #1:INTRODUCTION TO DIFFERENTIALEQUATIONSSO O
S SO SO O
S




TABLEOFCONTENTS S
O S
O




End of Section Solutions........................................................................................................................................................................................... 1
S O S O S O




Exercises 1.1 .............................................................................................................................................................................................................................................. 1
S O




Exercises 1.2 .......................................................................................................................................................................................................................................... 14
S O




Exercises 1.3 ..........................................................................................................................................................................................................................................22
S O




Chapter1 in Review Solutions........................................................................................................................................................30
S
O SO SO SO




ENDOFSECTIONSOLUTIONS S
O S
O S
O




EXERCISES 1.1 S O




1. Second order; linear S O S O




2. Third order; nonlinear because of (dy/dx) 4 S O S O S O S O S O




3. Fourth order; linear S O S O




4. Second order; nonlinear because of cos(r + u) S O S O S O S O S O S O SO




√ SO




5. Second order; nonlinear because of (dy/dx) 2 or S O S O S O S O S O
SO S O



1 + (dy/dx)2 S O S O




6. Second order; nonlinear because of R2 S O S O SO S O S O




7. Third order; linear S O S O




8. Second order; nonlinear because of ẋ2 S O S O SO S O S O O
S




9. First order; nonlinear because of sin ( dy/dx)
S O S O S O S O S O SO




10. First order; linear S O S O




11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear in y beca
SO S O S O SO SO SO S O S O S O
S O



S O SO SO SO SO SO SO S O O
S SO




use of y2. However, writing it in the form (y2 —1 )(dx/dy) + x = 0, we see that it is linear in x.
SO SO SO SO SO SO SO SO S O
S O



O
S SO SO SO S O SO SO SO SO SO S O S O S O




12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is linearinv.
SO SO SO SO SO SO SO SO SO SO SO S O S O
S O



SO SO SO SO S O O
S O
S O
S




However,writingiti nthef orm(v + uv —ueu)(du/dv) +u = 0,w es eethatitis nonlinear in u. O
S O
S O
S O
S O
S O
S O
S SO SO O
S O
S O
S SO SO O
S O
S O
S O
S O
S S O S O S O




13. Fromy=e − O
S O
S O
S
x/2 we obtain yj = — 1e−
SO SO
S O

SO O
S
O
S
x/2
. Then 2yj + y = —e−
O
S SO
S O

O
S S O SO
x/2
+ e− SO
x/2 = 0. SO




2




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO




Introduction to Differential Equations S O S O S O




6 6—
14. From y = S O S O — e 20t weobtain dy/dt = 24e−20t,s othat SO

SO SO SO SO
O
S
O
S O
S




5 5
dy +20y = 24e−20t 6 6 −20t SO S O




+ 20 — e = 24.
O
S SO SO




S O
SOS O




dt 5 5
S O




15. Fromy = e3x cos2x weobtainyj = 3e3x cos2x—2e3x sin2x andyjj = 5e3x cos2x— O
S SO SO
SO



O
S O
S O
S O
S
S O

SO
SO



O
S
SO



O
S O
S O
S
S O

SO
SO



O
S




12e3x sin2x, so that yjj — 6yj + 13y = 0. SO



O
S S O S O S O
S O

SO
S O

SO S O S O




j
16. From y = —c osxln(sec x + tan x ) we obtain y = —1 + sin xln(secx + tanx) and
SO SO S O O
S O
S O
S O
S SO O
S O
S SO SO SO SO S O
SO O
S SO O
S O
S O
S O
S SO O
S SO




jj jj
y = tanx+ cos xln(secx+ tanx). Then y + y = tanx.
SO S O SO O
S O
S SO SO O
S O
S O
S O
S O
S SO SO SO S O O
S SO S O O
S




17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2) −1/2
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O
SO S O

S O




we have S O




j 1/2 −
(y —x)y = (y — x)[1+ (2(x+ 2)
SO
S O SO SO SO O
S O
S O
S SO S OS O
SO




]

=y—x+2(y—x)(x+ 2)−1/2
O
S O
S O
S O
S O
S O
S
O
S O
S




= y — x + 2[x + 4(x + 2) 1/2 —x](x + 2)−1/2
SO S O SO SO S O SO S O SO S O
S OS O




S O SO




=y —x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.
O
S SO O
S O
S SO O
S O
S SO SO
S O



S O SO SO O
S SO




An interval of definition for the solution of the differential equation is (—
S O S O S O S O S O S O S O S O S O S O S O S O




2, ∞) because yj is not defined at x = —2.
SO S O S O
S O

S O S O S O S O S O S O




18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
SO SO O
S SO SO SO SO S O S O S O S O SO SO SO SO SO SO SO SO S O S O O
S SO SO




{x 5x /= π/2+nπ} SO S O O
S O
S O
S SO




or{ x x /= π/10+nπ/5}. Fromy j= 25s ec 25xw ehave
O
S SO S O SO SO O
S O
S O
S SO S O SO O
S SO O
S SO




j
y = 25(1 + tan2 5x)= 25 + 25 tan2 5x = 25 + y 2.
S O
S O S O



SO SO SO O
S SO O
S SO O
S SO SO O
S SO




An interval ofdefinition forthe solutionofthedifferential equationis (—π/10,π/10). An-
O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S O
S




Sother interval is (π/10, 3π/10), and so on.
O SO SO SO O
S S O SO SO




19. The domain of the function is {x 4 — x2 SO S O S O S O SO S O SO SO S O S O SO /= 0} or {x
S O SO SO x /= —2 orx /= 2} .Fromy j =
S O S O O
S O
S S O S O O
S O
S
S O




2x/(4 — x2)2 we have S O SO
S O



S O




1 2
= 2xy2.
yj = 2x SOS O S O




4—x2
S O




OS OS




An interval of definition for the solution of the differential equation is (—2, 2) . Other inter-
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O




vals are (—∞, —2) and (2, ∞) .

S O S O S O S O S O S O S O SO




20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
SO S O S O S O S O SO SO O
S SO S O S O S O S O SO S O S O SO O
S S O S O SO S O O
S S O S O




Thus, the domain is {x x/= π/2+ 2nπ}. From y j= — (11 —sinx) −3/2
2
(— cosx) we have
SO SO O
S O
S SO S O O
S S O O
S SO SO SO S O SO S O SO O
S O
S S O
S O



O
S O
S SO SO




2yj = (1 —sinx) −3/2 cosx= [(1 —sinx) −1/2] 3 cosx = y3 cosx.
S O

O
S O
S O
S O
S
SO



O
S O
S SO O
S O
S O
S
SO



O
S SO O
S
SO



O
S




An interval of definition for the solution of the differential equation is (π/2, 5π/2) . Another one is
S O S O S O S O S O S O S O S O S O S O S O S O SO S O S O S O S O




(5π/2, 9π/2), and so on. SO S O S O S O




2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS W ith MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
SO SO SO SO SO SO S
O S
O SO SO SO SO SO




Introduction to Differential Equations S O S O S O




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating
SO S O S O S O S O S O S O SOS O SOS O SO SO
x

implicitly we obtain S O S O 4


— =1 S O 2
2X — 1 dt SO O
S S O
X —1 dt O
S O
S S O




t
2 1 dX –4 –2 2 4
— = 1
SO S O




X —1 dt
O
S




2X —1
S O




O
S O
S SO SO




–2


–4 O
S




dX
= —(2X —1)(X — 1) = (X — 1)(1 — 2X).
dt
SO SO O
S SO O
S SO SO SO O
S SO O
S




S O




Exponentiating both sides of the implicit solution we obtain S O S O S O S O S O S O S O S O




2X— O
S




1 t X —1
=e
O
S O
S SO O
S
S O



O
S




2X — 1 = Xet — et SO SO SO SO
S O



SO




(et —1) =(et —2)X SO



O
S O
S O
S
SO



O
S




et 1
X= .
et — 2
S O S O


S O

SO SO




Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—
SO
S O



SO SO S O SO SO SO S O S O O
S S O SO SO SO SO S O SO




∞, ln 2) or on (ln 2,∞). The graph of the solution defined on (—
SO SO SO SO SO SO O
S S O S O S O S O S O S O S O S O




∞, ln 2) is dashed, and the graph of the solution defined on (ln 2, ∞) is solid.
SO SO S O S O S O S O S O S O S O S O S O S O S O S O S O S O S O




22. Implicitly differentiating the solution, we obtain S O S O S O S O S O
y

2 SOS O
dy dy 4

—2x — 4xy + 2y = 0
dx dx
SO S O SO O
S SO S O SO




S O S O


2
—x2 dy — 2xydx+ ydy = 0 S O



O
S O
S O
S O
S SO O
S SO SO




x
2xydx + (x2 —y)dy = 0. O
S O
S SO
S O



O
S SO SO
–4 O
S –2 2 4

–2
Using the quadratic formula to solve y2 — 2x2 y — 1 = 0
SO SO S O SO SO SO
SO S O



S O S O S O SOSO SOS O




√ √
fory,w egety = 2x2 ± 4x 4 + 4 /2 = x2 ± x4 +1.
SO SO



SO SO SO
S O SO




–4
O
S O
S O
S O
S S O SO SOS O S O S O O
S O
S





O
S




Thus, two explicit solutions are y1 = x2 +
SO




x4 + 1 and
S O


S O
SO SO SO SO SO S O
SOS O





SO S O




OO
S




y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
SOS O
S O
SOS O

S O


S O O
S S O S O S O S O S O S O SO




The graph of y1(x) is solid and the graph of y2 is dashed.
S O S O S O S O S O S O S O S O S O S O
SOS O
S O




3
€16,17
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
TheeCHANCELLOR EXAMS
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
27
Membre depuis
10 mois
Nombre de followers
2
Documents
334
Dernière vente
2 semaines de cela
EXAMS CENTRE INC. !!!!

TOP A+ GRADED EXAMS, TESTBANKS, SOLUTION MANUALS & OTHER STUDY MATERIALS SHOP!!!! 100% GUARANTEED Success When you purchase our documents, Please leave reviews so we can meet up to your satisfaction .''EXAMS CENTRE INC.'' your good grades is our top priority!!! BUY WITHOUT DOUBT!!!!

2,8

4 revues

5
1
4
0
3
1
2
1
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions