Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Python for Machine Learning / Machine Learning for Business

Note
-
Vendu
-
Pages
89
Publié le
13-02-2025
Écrit en
2024/2025

Full summary of Python for Machine Learning / Machine Learning for Business within Business Economics / Business Engineering major Data Science and AI (UANTWERPEN)












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
13 février 2025
Nombre de pages
89
Écrit en
2024/2025
Type
Resume

Aperçu du contenu

Machine Learning
AI: methods for improving the knowledge or performance of an intelligent agent over time, in
response to the agent's experience in the world
Link
• A computer interacts through data
o Learning from data leads to intelligence
▪ Big Data + Machine Learning = Artificial Intelligence

Machine Learning = automatic extraction of knowledge (patterns) from data
Data science = a set of fundamental principles that guide the extraction of knowledge from
data
Note: an initial set of data instances with known target variable needed!

• xij : the value of the input variable j for data instance i
o data instance xi : input vector n (row)
info of a user at a given moment
o input variable or feature xj : input vector m (column)
data variables : click patterns, IP address ..

Example:
predict personality likes through fb likes
 We can investigate the variables (likes) with highest and lowest coefficient in the linear
model.
Predict political preference




Input features (X) = words found in the tweet, such as "American", "come together", "stronger",
etc. Each tweet is turned into a vector, where each entry represents whether a specific word is
present or absent (1 or 0).

Training the Model (Learning Coefficients):
Coefficients (β): The linear model assigns weights to each word, reflecting its importance in
classifying a tweet as pro-Biden or pro-Trump.

After learning othe coefficients, the model can be used to predict how new people will vote
based on the presence f words in their tweets.

,Prediction: The sum of the product of input features and their coefficients yields a
prediction, which the model uses to classify the tweet. If the predicted value is greater than or
equal to 0, the model predicts one class (e.g., Biden). If it is less than 0, the model predicts the
other class (e.g., Trump).


Deep Learning : involves large ANN artificial neural networks that mimic the way the human
brain works
The end-user is still the engine of discovery
regardless of the tools and methods used, the person conducting the analysis (the end-user)
plays the crucial role in interpreting the data and deriving insights.!
 Querying and reporting : You know exactly what you are looking for.
 Visualization : multidimensional analysis

Business Intelligence = Getting the right information to the right person at the right time
Data Warehousing (collect & store data from multiple sources) :
• Reporting : you know exactly what you are looking for
• Machine learning : you don’t know what you look for! looking for new knowledge




Machine Learning Process : CRISP DM
= science + craft + creativity + common sense

CRISP-DM: Cross Industry Standard Process for Data Mining

1. Business Understanding: understand business problem + define objective
2. Data Understanding: data is collected, explored, to gain insights. ensure that the data
supports the business objectives
3. Data Preparation: cleaning, transforming, and formatting the data to get it ready for
modeling.
4. Modeling: Apply machine learning algorithms to build models using the prepared data.
5. Evaluation: Check performance
6. Deployment: Implement the model in the real world to solve the problem and monitor its
performance.

,DDDM Data Driven Decision Making
how data science supports decision-making in organizations.


Data Engineering : processes and manages data (including big data)
Data Science : analyzes this data, creating insights
These insights drive DDDM across the organization
Result : Faster processing and better decisions




Importance

• Combination of business knowledge and data science skills is highly valued
• Does every data scientist need 10 managers?! The demand for more managers reflects
the need for leaders who can effectively interpret and apply data insights to their
specific business contexts, not to manage data scientists directly

Firms that adopt DDDM have

• Productivity that is 5-6% higher
• Higher ROE
• Higher market value



Data Science Roles & Tasks
 Data Architect = designing and implementing data storage, such as databases
 Data Analyst = analyzing data to generate insights
 Data Scientist = works on predictive analytics and models data to extract insights
using ML algorithms
 Data Engineer = Provide the technical toolboxes that a data scientist needs access
to. skills, that can be used for storing, accessing, visualising data.
 Machine Learning Engineer = Specializes in building and deploying ML models,
focusing on automation and scalability.

, case
churn
 Gather data (demographics, payment history, customer support interactions, etc).
 Identify patterns and factors associated with customers who are likely to leave,
 And based on that, make churn management strategies

Fiscal fraud detection :

 ML algorithms (e.g., decision trees, anomaly detection) can
analyze financial transactions & tax filings
to detect irregularities : such as under-reported income or suspicious deductions,
by comparing patterns with known fraud cases.

Social fraud detection :

 ML models can analyze
social benefit claims
to identify inconsistencies: fraudulent claims for unemployment or disability benefits
and flagging anomalies.

Energy fraud detection :

 Algorithms can monitor energy usage patterns
for signs of tampering (e.g., meter manipulation)m detect sudden drops or spikes in
usage that deviate from typical consumption trends in similar households



privacy
FAT flow !
 Fair (privacy, discrimination)
 Accountable
 Transparant

Sensitive

 “Hey, you’re having a baby!” Target
 they target you with toy/pamper ads etc.

And beyond: data science ethics (importance of ethics)

Explaining versus Predicting
Steps of Explanatory modeling THVMP

1. Causal theory
2. Generate hypotheses based on constructs
3. Operationalize constructs in measurable variables
Find ways to measure each factor
4. Fit statistical model
statistical methods to assess the correlation between variables
€19,06
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ma2 Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
17
Membre depuis
4 année
Nombre de followers
14
Documents
28
Dernière vente
6 mois de cela

2,4

5 revues

5
1
4
0
3
1
2
1
1
2

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions