Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Calculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% Pass

Note
-
Vendu
-
Pages
6
Grade
A+
Publié le
03-01-2025
Écrit en
2024/2025

Calculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% PassCalculus 3 Practice Exam2 with Solutions (Fall), guaranteed 100% Pass

Montrer plus Lire moins
Établissement
Math
Cours
Math









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Math
Cours
Math

Infos sur le Document

Publié le
3 janvier 2025
Nombre de pages
6
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Math 213 – Calculus III Practice Exam 2 Solutions Fall 2002

1. Let
2
g(x, y, z) = e−(x+y) + z 2 (x + y).

(a) What is the instantaneous rate of change of g at the point (2, −2, 1) in the direction of
the origin?
We want the directional derivative of g at (2, −2, 1) in the direction of the origin. A vector in
this direction is −2~i + 2~j − ~k, and a unit vector in this direction is ~u = √19 (−2~i + 2~j − ~k) =
³ ´
2~ 2~ 1~
− 3 i + 3 j − 3 k . The gradient of g is
³ 2
´ ³ 2
´
grad g(x, y, z) = −2(x + y)e−(x+y) + z 2 ~i + −2(x + y)e−(x+y) + z 2 ~j + (2z(x + y)) ~k,

and in particular
grad g(2, −2, 1) = ~i + ~j.
Then the instantaneous rate of change of g in the direction ~u at the point (2, −2, 1) is
³ ´ µ 2 2~ 1 ~

~ ~ ~
g~u (2, −2, 1) = grad g(2, −2, 1) · ~u = i + j · − i + j − k = 0.
3 3 3

(b) Suppose that a piece of fruit is sitting on a table in a room, and at each point (x, y, z)
in the space within the room, g(x, y, z) gives the strength of the odor of the fruit. Fur-
thermore, suppose that a certain bug always flies in the direction in which the fruit odor
increases fastest. Suppose also that the bug always flies with a speed of 2 feet/second.
What is the velocity vector of the bug when it is at the position (2, −2, 1)?
Since the bug flies in the direction in which the fruit odor increases fastest, it flies in the
direction of grad g. It always has a speed of 2, so the velocity vector at (2, −2, 1) is

grad g(2, −2, 1) 2
2 = √ (~i + ~j).
kgrad g(2, −2, 1)k 2


2. The path of a particle in space is given by the functions x(t) = 2t, y(t) = cos(t), and
z(t) = sin(t). Suppose the temperature in this space is given by a function H(x, y, z).

(a) Find dH
dt , the rate of change of the temperature at the particle’s position. (Since the
actual function H(x, y, z) is not given, your answer will be in terms of derivatives of H.)
dH ∂H dx ∂H dy ∂H dz
dt = ∂x dt + ∂y dt + ∂z dt = 2 ∂H ∂H ∂H
∂x − sin t ∂y + cos t ∂z
∂H ∂H ∂H dH
(b) Suppose we know that at all points, ∂x > 0, ∂y < 0 and ∂z > 0. At t = 0, is dt
positive, zero, or negative?
dH
At t = 0, dt = 2 ∂H
∂x +
∂H
∂z > 0.




1

, 3. Let
f (x, y) = x3 − xy + cos(π(x + y)).

(a) Find a vector normal to the level curve f (x, y) = 1 at the point where x = 1, y = 1.
The gradient of f is normal to the level curve at each point. We find
grad f (x, y) = (3x2 − y − π sin(π(x + y)))~i + (−x − π sin(π(x + y)))~j, and
grad f (1, 1) = 2~i − ~j.
(b) Find the equation of the line tangent to the level curve f (x, y) = 1 at the point where
x = 1, y = 1.
The line is
2(x − 1) − (y − 1) = 0, or 2x − y = 1.

(c) Find a vector normal to the graph z = f (x, y) at the point x = 1, y = 1.
The graph is the level surface g(x, y, z) = 0 of the function g(x, y, z) = f (x, y)−z. The gradi-
ent of g is normal to the level surface at each point. We have grad g(x, y, z) = grad f (x, y)−~k.
Now f (1, 1) = 1, so a vector normal to the graph at (1, 1, 1) is

grad g(1, 1, 1) = grad f (1, 1) − ~k = 2~i − ~j − ~k.

(d) Find the equation of the plane tangent to the graph z = f (x, y) at the point x = 1,
y = 1.
The plane is 2(x − 1) − (y − 1) − (z − 1) = 0, or 2x − y − z = 0.

4. Let
f (x, y) = (x − y)3 + 2xy + x2 − y.

(a) Find the linear approximation L(x, y) near the point (1, 2).
First get the numbers: f (1, 2) = −1 + 4 + 1 − 2 = 2,
fx (x, y) = 3(x − y)2 + 2y + 2x, fx (1, 2) = 3 + 4 + 2 = 9,
fy (x, y) = −3(x − y)2 + 2x − 1, fy (1, 2) = −3 + 2 − 1 = −2.
Then L(x, y) = f (1, 2) + fx (1, 2)(x − 1) + fy (1, 2)(y − 2) = 2 + 9(x − 1) − 2(y − 2).
(b) Find the quadratic approximation Q(x, y) near the point (1, 2).
We need some more numbers:
fxx (x, y) = 6(x − y) + 2, fxx (1, 2) = −6 + 2 = −4,
fxy (x, y) = −6(x − y) + 2, fxy (1, 2) = 6 + 2 = 8,
fyy (x, y) = 6(x − y), fxy (1, 2) = −6.
Then

fxx (1, 2) fyy (1, 2)
Q(x, y) = L(x, y) + (x − 1)2 + fxy (1, 2)(x − 1)(y − 2) + (y − 2)2
2 2
= 2 + 9(x − 1) − 2(y − 2) − 2(x − 1)2 + 8(x − 1)(y − 2) − 3(y − 2)2 .




2
€11,80
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
sudoexpert119

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
sudoexpert119 Harvard University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
1 année
Nombre de followers
0
Documents
411
Dernière vente
-
A+ Smart Scholars Studio

Ace your exams with trusted, expertly crafted resources built for top-tier results.

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions