Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

samenvatting hoofdstuk 1 - Functies en hun afgeleiden

Note
-
Vendu
3
Pages
7
Publié le
31-03-2020
Écrit en
2019/2020

Samenvatting van hoofdstuk 1 met simpele ezelsbruggetjes

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
Hoofdstuk 1
Publié le
31 mars 2020
Nombre de pages
7
Écrit en
2019/2020
Type
Resume

Sujets

Aperçu du contenu

Hoofdstuk 1 “Functies en hun afgeleiden”



Functies

Lineaire functies

y = f(x) = a x + b

Hierbij snijdt de lijn de y-as in (0, b) dus als b 0 is dan is het snijpunt met de y-as (0,0) dit geeft een lijn
door de oorsprong.

Als a 0 is dan hangt y/f(x) niet af van de x-waardes en is dus dan ook een constante functie
(horizontale lijn) op de hoogte b  y = b

a bepaalt tevens de helling (hoe snel de lijn stijgt/daalt als deze 1x naar rechts verschuift)

y 2− y 1
a=
x 2−x 1




Machten en machtfuncties (ook wortels dus)

f(x) = c xp

c en p zijn positief  f(x) is stijgend en f(0) = 0

als c positief is en p negatief  f(x) is dalend en f(0) is oneindig

 Rekenregels machten

m
- n m
a =√ am =( √n a)
n



1
- a− p=
ap

- (ab) p =a p b p

- (a p)q =a pq

- a p a q=a p+ q

, Polynomen

Onder de polynomen (veeltermen) vallen ook lineaire functies, die eerder al behandeld zijn.

Een algemene vorm van polynomen is f(x) = a 0 xn + a1 xn-1 + … + an-1 x + an

N is de graad en a is de coëfficiënt van het polynoom

graad Naam functie
1 Lineaire functie
2 Kwadratische functie (parabool)


 Eigenschappen van kwadratische polynomen
- a > 0  f(x) dalparabool met minimum x= -b/2a en f(x) gaat richting oneindig als x naar
negatief/positief oneindig gaat.
Ezelsbruggetje:
- a < 0  f(x) is een bergparabool met maximum
bij x=-b/2a en f(x) gaat richting negatief oneindig - als a positief is dan maakt de functie
als x naar negatief/positief oneindig gaat. een blije smiley 😊
- De nulpunten zijn te berekenen door
- als a negatief is dan maakt de functie
−b ± √ b2−4 ac een boze smiley ☹
x=
2a



Rationele functies

Dit zijn quotiënten van twee polynomen

a0 x n +a 1 x n−1+ ...+ an−1 x n + an
f(x) = f ( x )= m m−1 m
b 0 x +b 1 x + ...+ bm−1 x + bm


Inverse functies

Een inverse functie geeft x als y wordt ingevuld (het is dus eigenlijk een omgebouwde functie die niet
y= … laat zien, maar x= …)

Als we y = a x + b als voorbeeld nemen en deze stapsgewijs ombouwen:

-b aan beide kanten geeft

y–b=ax

delen door a aan beide kanten geeft

y−b
=x
a
Gratuit
Accéder à l'intégralité du document:
Téléchargez

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
timodiederik
5,0
(1)

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
timodiederik Universiteit Leiden
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
22
Membre depuis
5 année
Nombre de followers
19
Documents
28
Dernière vente
1 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions