Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Neural networks - deel 1

Note
-
Vendu
-
Pages
51
Publié le
02-11-2024
Écrit en
2023/2024

Vak Neurological Aspects, deel 1 van Neural Networks, gegeven door Prof. Alaerts (KUL). Deel 2 (gegeven door Prof. Gilat) is ook beschikbaar.












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
2 novembre 2024
Nombre de pages
51
Écrit en
2023/2024
Type
Resume

Aperçu du contenu

NEUROLOGICAL ASPECTS:
NEURAL NETWORKS AND
REORGANIZATION
Academiejaar 2023-2024 – 2MARE




H1. NEUROSCIENTIFIC METHODS

H2. THE POTENTIAL OF NON-INVASIVE BRAIN
STIMULATION IN NEUROREHABILITATION

H3. AGEING AND NEUROPLASTICITY

H4. NEUROREHABILITATION AFTER STROKE




PART PROF. KAAT ALAERTS

, PART KAAT ALAERTS




Neurological aspects: neural networks
and reorganization
CHAPTER 1: NEUROSCIENTIFIC METHODS


• Measuring ‘brain activity’ at the systems level (not single-cell)
• Non-invasive (not ‘inside’ the brain, but at the level of the scull)
• Fundamental research
o Motor control, motor learning
o Cognition
o Memory
o ...
• Clinical research
o Neural processes underlying ageing
o Neural basis of diseases (stroke, Parkinson, epilepsy, neurodevelopmental disorders)
o Neural evaluation of disease progression
o Neural evaluation of interventions/ treatments

Look for each technique at equipment, neurophysiological basis and examples of applications




 Important concept to evaluate the advantages and disadvantages of different techniques
 Temporal and spatial resolution
o Some better for temporal: what is happening in time regarding brain activity?
o TEMPORAL = when in time
o SPATIAL = where in the brain


1/ MAGNETIC RESONANCE IMAGING (MRI)
What isn’t fMRI?
➢ fMRI is not bumpology (claims that bumps on the skull reflected exaggerated functions/traits)
➢ fMRI is not mind-reading
➢ fMRI is not invasive (the skull remains closed)
What is fMRI: a relative, safe, non-invasive technique


1

, PART KAAT ALAERTS




1.1 Equipment
- Giant magnet
- Head coil (helps with high-quality images)

MRI = brain anatomy
fMRI = functional MRI = brain activity
fcMRI = functional connectivity

First MRI-scan around 1950, first functional MRI-scan developed way later (around 1990)

1.2 Biological basis of MRI
• Measures brain anatomy
• Former name: (Nuclear) Magnetic Resonance Imaging → nothing to do with ‘radioactivity’, but
with the magnetic properties of protons, in the nuclei of atoms

Protons:
- Have a mass, are positive (+) and have a spin (they turn around)
- Because protons turn around, they have a small, but measurable magnetic field
- In everyday life, the protons in our body are in balance, randomly oriented, but in balance
- Inside the MRI scanner, which is one giant magnet, the protons align to the magnetic field (B0).
Either in parallel (same direction) or anti-parallel (opposite direction)
- Most protons will align parallel in MRI-scan
- The majority of atoms aligns in parallel, allowing to define the NET magnetization of protons
in the direction of B0
- This is what happens if you’re positioned in the scanner. And this magnetic field is ALWAYS on.




- Emission of a radio frequency pulse by the head coil, induces a flip of the NET magnetization
(instead of aligning to the Z- axis, the protons now align in the X-Y field)
- Proton is in excitation state
- Head coils will emit a radiofrequency: magnetic field of protons will shift (excitation
state) → follow the Y-axis
- However, protons don’t like being in this ‘high-energy’ excitation state’, and from the moment
the radio frequency pulse is turned off, it will ‘relax’ to its initial position (i.e., align back to the
Z-axis of the B0 field).
- During this ‘relaxation state’, the protons emit radio frequency themselves, and this signal is
measured. (The head coil, both emits and measures radio frequencies)
- Proton emits radio frequency during relaxation state
- Protons want to align with the Z-axis → when the radiofrequency is turned off, they
return to the Z-axis
- While doing this, they will emit radiofrequency itself → MRI can measure the different
relaxation times in the different tissue




2

, PART KAAT ALAERTS



The time it takes for a proton to relax to 63% of its initial state (along the z-axis) is called T1
 T1 = relaxation time

• Not all tissues ‘relax’ the same way!
• Protons in fat (e.g., white matter), relax much faster, than protons
in liquid (e.g., cerebrospinal fluid)
• By measuring the relaxation in different tissues, contrasts can be
visualized!
• In so-called ‘T1-weighted’ images, liquid is dark (less energy emitted), and fat is bright (more
energy emitted) → dark matter needs less energy at T1 compared to white matter (grey matter
is in between)
1.2.1 Examples of application
➢ Clinical: Localization of brain lesions
➢ Used in pre-surgical mapping (e.g., epilepsy) and prediction of disease progression




1.3 Functional MRI (fMRI)
 Uses MRI to indirectly measure brain activity

Same principle as MRI: contrasts in brain images based on measurement of magnetic relaxation
→ Here however, it is not about protons, but about hemoglobin in the blood...
1.3.1 Biological basis of fMRI
• Brain region active => increased O2 metabolism => increased blood flow
• fMRI measures the Blood Oxygen Level Dependent (BOLD) signal
o Oxyhemoglobin = diamagnetic (same as tissue)
o Deoxyhemoglobin = paramagnetic (weak magnetic) → interacts with the signal of MRI
• fMRI always measures a change in BOLD-response
o You always need a baseline to see how BOLD has changed
o During baseline situation, the BOLD-signal goes back down again

LEFT-LEFT = brain at rest
 Basic metabolism (good balance between oxy and de-oxy Hb in bloodstream, normal usage of
oxygen by the neuronal cells, normal glucoses dosage as energy resource)
LEFT-RIGHT = activation of the neuron
→ Neurons will require an increased metabolism of glucoses and oxygen
 Initially in bloodstream will be higher amount of de-oxy compared to oxy
→ This gives a reduced BOLD-signal
RIGHT = this triggers a haemodynamic respons rendering an increased transport of oxy to this region
of activation
 Rendering in a lowering of the ratio de-oxy/oxy → rendering in an increase of BOLD-signals



3
€10,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LB2001 Vrije Universiteit Brussel
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
12
Membre depuis
3 année
Nombre de followers
10
Documents
18
Dernière vente
1 mois de cela

3,0

1 revues

5
0
4
0
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions