Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Overview Marketing Research Methods 2024

Note
-
Vendu
4
Pages
28
Publié le
01-11-2024
Écrit en
2024/2025

Marketing Research Methods - Summary Overview. Perfect for the exam preparation, to get to know the basic definitions and interpretation of the research methods. Features: - 7 Key Topics: Covers essential methods per lecture week: PCA, factor analysis, ANOVA, and ANCOVA. - Simple Definitions: Easy-to-understand explanations of complex terms. - Step-by-Step Guidance: Clear breakdowns of the statistical techniques. - Exam-Ready: Organized by lecture themes with quick key takeaways for efficient review.

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Inconnu

Infos sur le Document

Publié le
1 novembre 2024
Fichier mis à jour le
3 novembre 2024
Nombre de pages
28
Écrit en
2024/2025
Type
Resume

Sujets

Aperçu du contenu

Week Lecture Focus Areas Definitions & Things to Know
Theme
1 Academic • Basics of Research Design: Framework for
Research, research design conducting research to answer specific
Experimental (hypothesis questions; includes methods like
Design, Data testing, experimental, observational, and survey
Preparation research research.
methods) Experimental Design: Design for testing
• Types of causal hypotheses by manipulating
experimental independent variables and measuring
design effects on dependent variables.
• Data cleaning Internal Validity: Degree to which
and preparation results are due to the treatment and not
external factors; high in controlled lab
settings.
Data Preparation: Involves cleaning,
handling missing values, and identifying
outliers.
Listwise vs. Pairwise Deletion:
Listwise removes entire cases with
missing data; pairwise only excludes
missing values for specific analyses.

2 PCA / Factor • Principal Principal Component Analysis (PCA):
Analysis / Component Data reduction technique that creates
Reliability Analysis (PCA) uncorrelated components from
Analysis • Factor Analysis correlated variables.
(FA) Factor Analysis: Method to identify
• Reliability underlying dimensions (factors) from
analysis and observed variables, often used in survey
Cronbach’s data.
Alpha Eigenvalue: Amount of variance
explained by a factor; factors with
eigenvalues >1 are typically retained.
KMO (Kaiser-Meyer-Olkin): Measure of
sample adequacy; values >0.5 indicate
suitability for FA.
Cronbach's Alpha: Reliability measure;
values >0.7 indicate good internal
consistency for a scale.

3 ANOVA and • Understanding ANOVA (Analysis of Variance):
ANCOVA and applying Statistical test for comparing means
ANOVA across multiple groups; identifies if any
• ANCOVA with group means differ significantly.
covariates ANCOVA (Analysis of Covariance):
• Main and ANOVA that controls for covariates,
interaction reducing unexplained variance.
effects Main Effect: The effect of a single
independent variable on the dependent
variable.
Interaction Effect: The combined effect
of two or more independent variables on
the dependent variable, showing if one

, variable’s effect depends on another
variable.

4 Regression • Basics of linear Regression Analysis: Predictive
Analysis regression modeling technique to understand the
• Interpreting relationship between dependent and
regression independent variables.
coefficients Coefficient: Represents the change in
• Assumptions the dependent variable for each unit
and diagnostics increase in the independent variable.
R-squared: Proportion of variance in the
dependent variable explained by the
model; values closer to 1 indicate better
fit.
Multicollinearity: Occurs when
independent variables are highly
correlated, potentially distorting the
analysis.
Binary regression: A statistical method
used to model outcomes with two
possible values (like yes/no or 0/1). It
predicts the probability of one outcome
occurring based on one or more
predictor variables, commonly using
models like logistic regression to ensure
predicted probabilities stay within the 0-1
range.
5 Moderation • Identifying Moderation: Occurs when the
Analysis moderators relationship between an independent
• Interaction variable and a dependent variable
terms in changes depending on the level of a
regression third variable (the moderator).
• Interpreting Interaction Term: Created in regression
moderation to test moderation; shows if the effect of
effects one variable varies across levels of the
moderator.
Simple Slope Analysis: Analyzes the
effect of the independent variable at
specific levels of the moderator, often
used for interpreting significant
interaction terms.

6 Mediation • Mediators in Mediation: Process where an
Analysis causal models independent variable influences a
• Indirect effects dependent variable through a third
and mediation variable (the mediator).
• Baron and Direct Effect: The effect of the
Kenny’s steps independent variable on the dependent
for mediation variable without considering the
mediator.
Indirect Effect: The portion of the effect
of the independent variable on the
dependent variable that occurs through
the mediator.

, Baron and Kenny Steps: Four steps to
establish mediation, including showing
that the IV affects the mediator and that
the mediator affects the DV.

7 Cluster • Hierarchical vs. Cluster Analysis: Technique to group
Analysis non-hierarchical similar cases into clusters, aiming for
clustering high similarity within clusters and high
• Dendrograms dissimilarity between clusters.
and cluster Dendrogram: A tree diagram that shows
interpretation the arrangement of clusters formed by
• Standardization hierarchical clustering.
Hierarchical Clustering: Type of
clustering that builds clusters step-by-
step, either by merging or splitting
clusters.
K-means Clustering: Non-hierarchical
method that partitions data into a set
number of clusters by minimizing within-
cluster variance.
Standardization: Converts variables to
a common scale to ensure each has
equal weight in clustering.




Inhoudsopgave
Inhoudsopgave ..................................................................................................................................... 3

Lecture 1: Academic Research, Experimental Design, and Data Preparation ................................ 4

Lecture 2: Principal Component Analysis (PCA), Factor Analysis (FA), and Reliability Analysis 7

Lecture 3: ANOVA and ANCOVA ........................................................................................................ 10

Lecture 4: Regression Analysis......................................................................................................... 13

Lecture 5: Moderation Analysis ......................................................................................................... 16

Lecture 6: Mediation Analysis ........................................................................................................... 19

Lecture 7: Cluster Analysis ................................................................................................................ 22

Output interpretation .......................................................................................................................... 25
€8,98
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ba2000 Rijksuniversiteit Groningen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
28
Membre depuis
4 année
Nombre de followers
21
Documents
11
Dernière vente
1 mois de cela

3,0

2 revues

5
1
4
0
3
0
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions