Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Summary Real Analysis A Comprehensive Course in Analysis, Part 1 Barry Simon

Note
-
Vendu
-
Pages
811
Publié le
25-10-2024
Écrit en
2024/2025

Reed–Simon2 starts with “Mathematics has its roots in numerology, geometry, and physics.” This puts into context the division of mathematics into algebra, geometry/topology, and analysis. There are, of course, other areas of mathematics, and a division between parts of mathematics can be artificial. But almost universally, we require our graduate students to take courses in these three areas

Montrer plus Lire moins
Établissement
Cours

















Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
25 octobre 2024
Nombre de pages
811
Écrit en
2024/2025
Type
Resume

Sujets

Aperçu du contenu

Real Analysis
A Comprehensive Course in Analysis, Part 1




Barry Simon

,Real Analysis
A Comprehensive Course in Analysis, Part 1

,
, http://dx.doi.org/10.1090/simon/001




Real Analysis
A Comprehensive Course in Analysis, Part 1



Barry Simon




Providence, Rhode Island

,2010 Mathematics Subject Classification. Primary 26-01, 28-01, 42-01, 46-01; Secondary
33-01, 35-01, 41-01, 52-01, 54-01, 60-01.




For additional information and updates on this book, visit
www.ams.org/bookpages/simon




Library of Congress Cataloging-in-Publication Data
Simon, Barry, 1946–
Real analysis / Barry Simon.
pages cm. — (A comprehensive course in analysis ; part 1)
Includes bibliographical references and indexes.
ISBN 978-1-4704-1099-5 (alk. paper)
1. Mathematical analysis—Textbooks. I. Title.

QA300.S53 2015
515.8—dc23
2014047381




Copying and reprinting. Individual readers of this publication, and nonprofit libraries
acting for them, are permitted to make fair use of the material, such as to copy select pages for
use in teaching or research. Permission is granted to quote brief passages from this publication in
reviews, provided the customary acknowledgment of the source is given.
Republication, systematic copying, or multiple reproduction of any material in this publication
is permitted only under license from the American Mathematical Society. Permissions to reuse
portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink
service. For more information, please visit: http://www.ams.org/rightslink.
Send requests for translation rights and licensed reprints to .
Excluded from these provisions is material for which the author holds copyright. In such cases,
requests for permission to reuse or reprint material should be addressed directly to the author(s).
Copyright ownership is indicated on the copyright page, or on the lower right-hand corner of the
first page of each article within proceedings volumes.


c 2015 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.

∞ The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability.
Visit the AMS home page at http://www.ams.org/
10 9 8 7 6 5 4 3 2 1 20 19 18 17 16 15

, To the memory of Cherie Galvez

extraordinary secretary, talented helper, caring person



and to the memory of my mentors,
Ed Nelson (1932-2014) and Arthur Wightman (1922-2013)

who not only taught me Mathematics
but taught me how to be a mathematician

,
,Contents


Preface to the Series xi

Preface to Part 1 xvii

Chapter 1. Preliminaries 1
§1.1. Notation and Terminology 1
§1.2. Metric Spaces 3
§1.3. The Real Numbers 6
§1.4. Orders 9
§1.5. The Axiom of Choice and Zorn’s Lemma 11
§1.6. Countability 14
§1.7. Some Linear Algebra 18
§1.8. Some Calculus 30

Chapter 2. Topological Spaces 35
§2.1. Lots of Definitions 37
§2.2. Countability and Separation Properties 51
§2.3. Compact Spaces 63
§2.4. The Weierstrass Approximation Theorem and Bernstein
Polynomials 76
§2.5. The Stone–Weierstrass Theorem 88
§2.6. Nets 93
§2.7. Product Topologies and Tychonoff’s Theorem 99
§2.8. Quotient Topologies 103

vii

,viii Contents


Chapter 3. A First Look at Hilbert Spaces and Fourier Series 107
§3.1. Basic Inequalities 109
§3.2. Convex Sets, Minima, and Orthogonal Complements 119
§3.3. Dual Spaces and the Riesz Representation Theorem 122
§3.4. Orthonormal Bases, Abstract Fourier Expansions,
and Gram–Schmidt 131
§3.5. Classical Fourier Series 137
§3.6. The Weak Topology 168
§3.7. A First Look at Operators 174
§3.8. Direct Sums and Tensor Products of Hilbert Spaces 176
Chapter 4. Measure Theory 185
§4.1. Riemann–Stieltjes Integrals 187
§4.2. The Cantor Set, Function, and Measure 198
§4.3. Bad Sets and Good Sets 205
§4.4. Positive Functionals and Measures via L1 (X) 212
§4.5. The Riesz–Markov Theorem 233
§4.6. Convergence Theorems; Lp Spaces 240
§4.7. Comparison of Measures 252
§4.8. Duality for Banach Lattices; Hahn and Jordan
Decomposition 259
§4.9. Duality for Lp 270
§4.10. Measures on Locally Compact and σ-Compact Spaces 275
§4.11. Product Measures and Fubini’s Theorem 281
§4.12. Infinite Product Measures and Gaussian Processes 292
§4.13. General Measure Theory 300
§4.14. Measures on Polish Spaces 306
§4.15. Another Look at Functions of Bounded Variation 314
§4.16. Bonus Section: Brownian Motion 319
§4.17. Bonus Section: The Hausdorff Moment Problem 329
§4.18. Bonus Section: Integration of Banach Space-Valued
Functions 337
§4.19. Bonus Section: Haar Measure on σ-Compact Groups 342

, Contents ix


Chapter 5. Convexity and Banach Spaces 355
§5.1. Some Preliminaries 357
§5.2. Hölder’s and Minkowski’s Inequalities: A Lightning Look 367
§5.3. Convex Functions and Inequalities 373
§5.4. The Baire Category Theorem and Applications 394
§5.5. The Hahn–Banach Theorem 414
§5.6. Bonus Section: The Hamburger Moment Problem 428
§5.7. Weak Topologies and Locally Convex Spaces 436
§5.8. The Banach–Alaoglu Theorem 446
§5.9. Bonus Section: Minimizers in Potential Theory 447
§5.10. Separating Hyperplane Theorems 454
§5.11. The Krein–Milman Theorem 458
§5.12. Bonus Section: Fixed Point Theorems and Applications 468
Chapter 6. Tempered Distributions and the Fourier Transform 493
§6.1. Countably Normed and Fréchet Spaces 496
§6.2. Schwartz Space and Tempered Distributions 502
§6.3. Periodic Distributions 520
§6.4. Hermite Expansions 523
§6.5. The Fourier Transform and Its Basic Properties 540
§6.6. More Properties of Fourier Transform 548
§6.7. Bonus Section: Riesz Products 576
§6.8. Fourier Transforms of Powers and Uniqueness of
Minimizers in Potential Theory 583
§6.9. Constant Coefficient Partial Differential Equations 588
Chapter 7. Bonus Chapter: Probability Basics 615
§7.1. The Language of Probability 617
§7.2. Borel–Cantelli Lemmas and the Laws of Large Numbers
and of the Iterated Logarithm 632
§7.3. Characteristic Functions and the Central Limit Theorem 648
§7.4. Poisson Limits and Processes 660
§7.5. Markov Chains 667
€13,75
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Exammate Indiana University Of Pennsylvania
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
56
Membre depuis
4 année
Nombre de followers
8
Documents
3200
Dernière vente
4 jours de cela
The plug

You cannot simultaneously prevent and prepare for war. Albert Einstein We'd love to hear how satisfied you are with your order. Please take a moment to leave a review, Thank you.

2,6

9 revues

5
1
4
1
3
3
2
1
1
3

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions