Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Geometry Unit Test (88-) Questions and Answer

Note
-
Vendu
-
Pages
2
Grade
A+
Publié le
14-09-2024
Écrit en
2024/2025

Geometry Unit Test (88-) Questions and Answer Is MNL ≅ QNL? Why or why not? A. Yes, they are congruent by either ASA or AAS. Quadrilateral ABCD is translated down and left to form quadrilateral OLMN. If AB = 6 units, BC = 5 units, CD = 8 units, and AD = 10 units, what is LO? B. 6 units Previous Play Next Rewind 10 seconds Move forward 10 seconds Unmute 0:00 / 0:15 Full screen Brainpower Read More Three quadrilaterals exist such that GHJK ≅ ASDF and GHJK ≅ VBNM. If MV measures 3 cm, which other segment must measure 3 cm? A. AF Triangle DEF is congruent to GHJ by the SSS theorem. Which rigid transformation is required to map DEF onto GHJ? D. translation How can a translation and a reflection be used to map ΔHJK to ΔLMN? B. Translate K to N and reflect across the line containing JK. Is there a series of rigid transformations that could map ΔQRS to ΔABC? If so, which transformations could be used? D. Yes, ΔQRS can be translated so that Q is mapped to A and then reflected across the line containing QS. Two sides and the non-included right angle of one right triangle are congruent to the corresponding parts of another right triangle. Which congruence theorem can be used to prove that the triangles are congruent? D. HL What additional information is needed to prove that the triangles are congruent using the AAS congruence theorem? C. LOA ≅ LMA Given: bisects ∠MRQ; ∠RMS ≅ ∠RQS. Which relationship in the diagram is true? B. △RMS ≅ △RQS by AAS Which congruence theorem can be used to prove △WXS ≅ △YZS? C. SAS Could ΔJKL be congruent to ΔXYZ? Explain. C. No, because the hypotenuse of one triangle is equal in length to the leg of the other triangle. In ΔXYZ, m∠X = 90° and m∠Y = 30°. In ΔTUV, m∠U = 30° and m∠V = 60°. Which is true about the two triangles? A. ΔXYZ ≅ ΔTUV Which pair of triangles can be proven congruent by SAS? A. Quadrilateral LMNO is reflected over the line as shown, resulting in quadrilateral CDAB. Given the congruency statement LMNO ≅ CDAB, which segment corresponds to ML? D. DC In the diagram, ∠J ≅ ∠M and JL ≅ MR. What additional information is needed to show ΔJKL ≅ △MNR by SAS? D. JK ≅ MN

Montrer plus Lire moins
Établissement
Mnl
Cours
Mnl








Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Mnl
Cours
Mnl

Infos sur le Document

Publié le
14 septembre 2024
Nombre de pages
2
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Geometry Unit Test (88%) Questions and
Answers
Is MNL ≅ QNL? Why or why not? - answer A. Yes, they are congruent by either ASA
or AAS.

Quadrilateral ABCD is translated down and left to form quadrilateral OLMN. If AB = 6
units, BC = 5 units, CD = 8 units, and AD = 10 units, what is LO? - answer B. 6 units

Three quadrilaterals exist such that GHJK ≅ ASDF and GHJK ≅ VBNM. If MV
measures 3 cm, which other segment must measure 3 cm? - answer A. AF

Triangle DEF is congruent to GHJ by the SSS theorem. Which rigid transformation is
required to map DEF onto GHJ? - answer D. translation

How can a translation and a reflection be used to map ΔHJK to ΔLMN? - answer B.
Translate K to N and reflect across the line containing JK.

Is there a series of rigid transformations that could map ΔQRS to ΔABC? If so, which
transformations could be used? - answer D. Yes, ΔQRS can be translated so that Q
is mapped to A and then reflected across the line containing QS.

Two sides and the non-included right angle of one right triangle are congruent to the
corresponding parts of another right triangle. Which congruence theorem can be used
to prove that the triangles are congruent? - answer D. HL

What additional information is needed to prove that the triangles are congruent using
the AAS congruence theorem? - answer C. LOA ≅ LMA

Given: bisects ∠MRQ; ∠RMS ≅ ∠RQS. Which relationship in the diagram is true? -
answer B. △RMS ≅ △RQS by AAS

Which congruence theorem can be used to prove △WXS ≅ △YZS? - answer C.
SAS

Could ΔJKL be congruent to ΔXYZ? Explain. - answer C. No, because the
hypotenuse of one triangle is equal in length to the leg of the other triangle.

In ΔXYZ, m∠X = 90° and m∠Y = 30°. In ΔTUV, m∠U = 30° and m∠V = 60°. Which is
true about the two triangles? - answer A. ΔXYZ ≅ ΔTUV

Which pair of triangles can be proven congruent by SAS? - answer A.
€10,93
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Pogba119 Harvard University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
48
Membre depuis
1 année
Nombre de followers
2
Documents
4936
Dernière vente
1 mois de cela
NURSING TEST

BEST EDUCATIONAL RESOURCES FOR STUDENTS

3,9

9 revues

5
4
4
2
3
2
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions