Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Machine Learning 2 Samenvatting/College aantekening Endterm

Note
-
Vendu
2
Pages
15
Publié le
12-09-2024
Écrit en
2023/2024

In dit document staat per college alle informatie die ik heb verzameld (incl. tekeningen en cuts uit de slides) om te studeren voor de Endterm van Machine Learning 2.

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
12 septembre 2024
Nombre de pages
15
Écrit en
2023/2024
Type
Notes de cours
Professeur(s)
Heysem kaya & meaghan fowlie
Contient
Toutes les classes

Sujets

Aperçu du contenu

PLA maximizes data
wiw Scalar
overall variance
of the
of directions
=

ra along a small set ,
who
info on class labels

WWT = matrix
-C




Lecture 9 og(10/23
instances x
features
The following notation will be used: * nxd = matrix




Reasons to reduce dimensionality:
No
-Reduces time complexity; less computation
-Reduces space complexity; fewer parameters
* 1st Axis PCA creates accounts
-Saves cost of observing/measuring features
-Simpler models are more robust in small datasets for most variation in data
-More interpretable; simpler explanation
-Data visualisation (structure, groups, outliers) if plotted in 2 or 3 dimensions
Unsupervised
Feature selection: (subset selection algorithms): choosing k<d important features and ignoring the remaining d - k
->preferred when features are individually powerful/meaningful
Feature extraction: project the original x i, i=1,…,d dimensions to new k<d dimensions zj, j=1,…,k)
->preferred when features are individually weak and have similar variance
We want to maximise

*
PCA (Principal Component Analysis); Find a low-dimensional space s.t. when x is projected there, information loss is
info density
low

minimised By leaving out column don't loose lot of info
a , we a


-The projection of x on the direction of w is: z = w Tx a


-Find w s.t. Var(z) is maximised (subject to |w| = 1)
constraint wisunit vet
minimize
function
a
Considering a constrained optimisation problem min x Tw subject to Aw = b, w ∈ S w varianeas
Lagrangian Relaxation method relaxes the explicit linear (equality) constraints by introducing a langrange multiplier
t
vector λ and brings them into the optimization function: min x tw + λ (Aw - b) subject to w ∈ S
The langrangian function of the original problem can be expressed as: L(λ) = min{x t w + λ (Aw - b) | w ∈ S}
t

T
PCA makes sure z = W (x - m), where the columns of W are the eigenvectors of ∑ and m is sample mean;
Centers the data at the origin and rotates the axes
Zwi Xw =
,
,
rector
with WT [W X O
, ,
=
2Zw
& xWiw,
,
-




=
zaw , =
0




pick largest eigenvalue
from [+ biggest value
of
variance
for projected data X1 Xi
PoV (Proportion of Variance): X x2 xk XdS
+. .. +


, + +... + +... +


when λ i are sorted in descending order, typically you can stop at PoV > 0.9 or elbow data visualisation/dimensionality reduction
PCA can be applied to clean out outliers from data, to de-noise, and learn/explore common patterns(eigenvectors)
T
Singular Value Decomposition: X = VAW is a dimensionality/data reduction method
U V = NxN ;contains eigenvectors of XX X USWT
T
=
C
eigenvalues of
w T
W = dxd ;contains eigenvectors of X X AV = WTX A = VXWT Given X centered ; C =
represent variances
A = Nxd ;contains singular values on its first k diagonal of principal components
S
Singular values in SVD are
eigenvalues
[
represent amount
of variance of each vector




LDA Linear Discriminant Analysis (k=2 classes) focus is separability between classes on

*
Find a low-dimensional space s.t. when x is projected, classes are well-separated
Find w that maximises =>
s see axis
maxseparationbetweenmeansofprojecte
new

new axis




S
We come to deal with between-class scatter:
eigenvectors basedt
And within-class scatter: (k=2, binary classification case)

Fishers Linear Discriminant (k=2 classes)
~ between
3
. within




Reduce
dimensionality to 1

, SVD VAWT X is mean-normalized how
: X =
,
Assuming ,
are the

C XTX/N-1 and related ?
eigenvalues of singular values of SVD
=




singular values in SVD
of mean-normalized X are
directly related to the
eigenvalues of cov-matrix C ,
so
singular values provide info about the

amount
of variance explained by each principal component just like ,



the eigenvalues of C .


Largest singular value* largest eigenvalue


Find point central to all classes
min . distance between each class &
the central point while min Scatter
, .




d + d2 + d2/52 + 52 + 52




Vector C WIWT CWWT
projection Imagine light above under
= =



~ U where the red arrow shadows
,
matrix
of eigenvectorsC diagonal matrix of eigenvalues (
WTW I
are
projected on the
target vector eigenvectors of (in W are
orthogonal to each other >
-
=




u = (2) unit vector (has
lengthymagnitude = 1)


& Xi K, K7
. .
., magnitude datapoints

01


Eigenvectors -
X values A =
- 2 -
3 o
m
is not invertible


Val : Ax =
XX ,
where X +0 and XER Ax XX XIx = = >
-
Ax XIX -
= (A XI)x - = 0


- -
- x I

So det1A-XI) + det det det (ad-b)
eigenvalue eigenvector 0 -2
=
- =
=




= x2 + 3x + 2

= (x+ 2)(x + 1) 0+ x 2, x 1

:
= = =




(t) (2)
Vec + x X 2x 3x2
x23any values work so
=
- - - = -

,

-

2x1 =
2X2
Xi = - X2
If you know something is an eigenvector for a given matrix/linear transformation, you know that, that linear transformation will map that
eigenvector onto a different vector which maintains the same ratios (ex. ratios of x1(length) to x2(weight))


Lagrange multipliers = Ul
uSu = (u + u1)
H = 42
*
Direction + uTSu + X(1 uπy)
is important not
magnitude ; llull 1 + Max (uTSu) S . 4 +u 1
t -
= =
, .




11411

Taking the derivative of ↓ get Su 14 uSu XnTy
=
We = + =


maximise
So take all S to maximise .
eigenvalues of and
find biggest one X
€9,46
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
Alysa3 Universiteit Utrecht
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
17
Membre depuis
2 année
Nombre de followers
5
Documents
6
Dernière vente
2 mois de cela

3,0

1 revues

5
0
4
0
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions