Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting Statistiek II voor de sociale wetenschappen - VUB

Vendu
9
Pages
42
Publié le
18-08-2024
Écrit en
2023/2024

Beknopte én complete samenvatting van de theorie voor het vak 'Statistiek II voor de sociale wetenschappen' zoals gedoceerd aan de VUB door prof. De Winter.













Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
18 août 2024
Fichier mis à jour le
23 septembre 2024
Nombre de pages
42
Écrit en
2023/2024
Type
Resume

Sujets

Aperçu du contenu

STATISTIEK II VOOR DE SOCIALE WETENSCHAPPEN

H1. HERHALING KERNBEGRIPPEN




Een steekproef is een selectie/subset uit de volledige groep onderzoekseenheden in de populatie. Deze moet
dezelfde karakteristieken hebben als de populatie die ze vertegenwoordigt (= representativiteit).

⚠ Voor veel statistische technieken moet dit een eenvoudige aselecte toevalssteekproef zijn (EAS/SRS - simple
random sample). Dat wilt zeggen dat elke onderzoekseenheid een gelijke kans op selectie heeft ≠ 0. ⚠

Er zijn twee soorten steekproeffouten:

● Fouten van betrouwbaarheid → niet-systematische fouten

● Fouten van geldigheid → systematische fouten
○ Selectiebias: manier van selectie respondenten geeft een vertekend beeld
○ Non-respons bias: zij die deelname weigerden verschillen systematisch van respondenten
○ Item non-respons bias

Beschrijvende / deductieve statistiek




Inferentiële / inductieve statistiek
→ o.b.v. steekproefdata conclusies trekken m.b.t. de populatie, doel = bepalen significantie resultaten
→ veralgemeenbaarheid?

Inferentiële statistiek maakt gebruik van kansrekenen en kansverdelingen & theoretische basis van de
steekproevenverdeling en centrale limietstelling. Hiervoor worden twee technieken gebruikt: hypothesetoetsen en
betrouwbaarheidsintervallen.




1

,Variabelen zijn de kenmerken die we meten bij de onderzoekseenheden. Er is nood aan definiëring en
operationalisering van concepten.




Frequentieverdelingen

𝑛 = aantal antwoordcategorieën 𝑁 = som van absolute frequenties,
steekproefgrootte

= ∑ 𝐹𝑥 = 𝑁
𝑖=1 𝑖




𝐹𝑥 = absolute frequentie 𝑓𝑖 = relatieve frequentie → som van relatieve
𝑖 → aantal keer dat 𝑥𝑖 werd waargenomen frequenties is altijd 1
𝑓𝑖
voor de variabele 𝑥 = 𝑁

𝑁
→ ∑ 𝑓𝑖 = 1 = 𝑁
𝑖=1


𝐾𝑥 = cumulatieve absolute frequentie 𝑘𝑥 = cumulatieve relatieve frequentie
𝑖 𝑖
= ∑ 𝐹𝑥 = ∑ 𝑓𝑥
𝑥𝑖≤𝑥𝑗 𝑗 𝑥𝑖≤𝑥𝑗 𝑗




2

,Maten van centraliteit

𝑥0 = modus
= waarde die het vaakst voorkomt in de frequentietabel
∼ = mediaan
𝑥
= middelste waarde in de tabel

𝑥 = gemiddelde
1
= 𝑛
Σ𝑥𝑖


Maten van spreiding

𝑉 = 𝑚𝑎𝑥𝑥 − 𝑚𝑖𝑛𝑥 2 1 2
𝑖 𝑖 𝑠 = 𝑛−1
Σ(𝑥𝑖 − 𝑥)

= variatiebreedte = variantie in steekproef
= verschil tussen grootste en kleinste = gemiddelde van de gekwadrateerde
waargenomen waarde afwijkingen van het gemiddelde


𝐼 = 𝐾3 − 𝐾1 2
=
1
Σ(𝑥𝑖 − µ)
2
σ 𝑁


= interkwartielafstand = 𝐼𝑄𝑅 = variantie in populatie


2 2
= ∑ (𝑥𝑖 − 𝑥) (in steekproef) = 𝑠 (in steekproef)
𝑆𝑆 𝑖=1 𝑠 of σ 2
= σ (in populatie)
2
= ∑ (𝑥𝑖 − µ) (in populatie)
𝑖=1 = standaardafwijking
→ uitgedrukt in dezelfde meeteenheid als de
= variatie / kwadratensom variabele
→ altijd positief cijfer,
→ hoe hoger = hoe hoger de spreiding



H2. KANSREKENEN

Kans is een proportie, en kans heeft dus een waarde tussen 0 en 1 → ∈ [0, 1]
De mogelijke waarden zijn gekend, maar we kennen de exacte waarde voor elke observatie niet op voorhand. Dit feit is
de toevalsvariabele of stochastische variabele. Op korte termijn of op basis van weinig observaties is kans zeer
onvoorspelbaar. Naarmate het aantal observaties stijgt, komt het aantal keer dat een bepaalde uitkomst geobserveerd
wordt dichter bij de reële kans → cumulatieve proportie.




Figuur: Kans dat je op lange termijn een 6 gooit met een dobbelsteen = cumulatieve proportie


3

,Kans kwantificeert toeval op lange termijn. Deze wet van de grote aantallen werd ontdekt door Bernoulli.
Volgens deze wet lijkt het aandeel van een bepaalde uitkomst in het totaal aantal uitkomsten op lange termijn naar een
bepaalde waarde te convergeren. Belangrijk hiervoor is de assumptie van onafhankelijkheid, wat wil zeggen dat de
ene observatie onafhankelijk is van de andere observatie.
bv. een dobbelsteen ⚂ heeft geen geheugen: elke rol heeft ⅙ kans om op een bepaalde waarde uit te komen.


Theoretische kans is op voorhand bepaalbaar (bv. eerlijke dobbelsteen, kans op lottowinst). Maar soms is kans
onmogelijk om op voorhand te bepalen, denk aan kans op hospitalisatie bij covidinfectie. De definitie van
empirische kans:

“De kans op een bepaalde uitkomst is de limiet van de relatieve frequenties (wanneer het aantal observaties ∞
wordt). De kans op een bepaalde uitkomst is het aandeel van die uitkomst in het aantal uitkomsten op
lange termijn.”

⚠ Oneindigheid kan niet geobserveerd worden → deze kansen altijd benaderingen van hun limietwaarden. ⚠

Subjectieve kans

Soms is het onmogelijk om (veel) trials uit te voeren (bv.: Wat is de kans op een meteorietinslag?). In dit geval is de
kans op een bepaalde uitkomst gebaseerd op a priori informatie. Bayesian statistics is de tak van de statistiek die
vertrekt van subjectieve probabiliteit.


Ω = 𝑢𝑖𝑡𝑘𝑜𝑚𝑠𝑡𝑒𝑛𝑟𝑢𝑖𝑚𝑡𝑒 = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑒𝑡

Ω is de verzameling van alle mogelijke uitkomsten. Enkele voorbeelden:

● Dobbelsteen ⚂ : Ω = {1, 2, 3, 4, 5, 6}
● Muntstuk - kop of munt: Ω = {𝐾, 𝑀}
● Som uitkomsten van twee dobbelstenen ⚂⚃ : Ω = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

De uitkomstenruimte voor meerdere observaties wordt gevisualiseerd via een boomdiagram. Hieronder de
mogelijke prestaties van studenten op een examen (C = correct, I = incorrect).

Uit het boomdiagram valt af te leiden dat er 8 uitkomsten van het examen mogelijk zijn:
Ω = {𝐶𝐶𝐶, 𝐶𝐶𝐼, 𝐶𝐼𝐶, 𝐶𝐼𝐼, 𝐼𝐶𝐶, 𝐼𝐶𝐼, 𝐼𝐼𝐶, 𝐼𝐼𝐼}




4

, Een gebeurtenis of event is een subset van de uitkomstenruimte / deelverzameling van uitkomsten. Voorbeelden:

● Dobbelsteen ⚂
○ Gebeurtenis 𝐴 = ‘een zes gooien’ = {6}
○ Gebeurtenis 𝐵 = ‘een even aantal ogen gooien’ = {2, 4, 6}

● Studenten op examen
○ Gebeurtenis 𝐴 = alle studenten die de drie vragen incorrect beantwoord hebben = {𝐼𝐼𝐼}
○ Gebeurtenis 𝐵 = alle studenten die minstens één vraag correct beantwoord hebben
= {𝐶𝐶𝐶, 𝐶𝐶𝐼, 𝐶𝐼𝐶, 𝐶𝐼𝐼, 𝐼𝐶𝐶, 𝐼𝐶𝐼, 𝐼𝐼𝐶}


De kans (probability) op gebeurtenis 𝑃(𝐴) wordt verkregen door de kansen van elke individuele uitkomst binnen
de gebeurtenis op te tellen. Wanneer alle mogelijke uitkomsten dezelfde kans hebben is dit de formule voor het
berekenen van een kans op een gebeurtenis:

𝑎𝑎𝑛𝑡𝑎𝑙 𝑢𝑖𝑡𝑘𝑜𝑚𝑠𝑡𝑒𝑛 𝑖𝑛 𝑔𝑒𝑏𝑒𝑢𝑟𝑡𝑒𝑛𝑖𝑠 𝐴
𝑃(𝐴) = 𝑎𝑎𝑛𝑡𝑎𝑙 𝑢𝑖𝑡𝑘𝑜𝑚𝑠𝑡𝑒𝑛 𝑖𝑛 Ω


Bijvoorbeeld ⚂

1
● Gebeurtenis 𝐴 = ‘een vier gooien’ = {4} → 𝑃(𝐴) = 6



● Gebeurtenis 𝐵 = 7 als som van twee geworpen ⚂⚃ = {7}
6 1
→ 𝑃(𝐵) = 36
= 6



● Gebeurtenis 𝐶 = 3 als som van twee geworpen ⚂⚃ = {3}
2 1
→ 𝑃(𝐶) = 36
= 18



We kunnen ook de kans op de doorsnede van gebeurtenissen 𝑃(𝐴 ∩ 𝐵) berekenen. De doorsnede van
gebeurtenissen impliceert dat beide gebeurtenissen tegelijkertijd voorkomen.



𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵 ∩ 𝐴)



Bijvoorbeeld kaartspel 🂱🂩

● Gebeurtenis 𝐴 = kaart is een aas = {1}
4
𝑃(𝐴) = 52


● Gebeurtenis 𝐵 = kaart is een hart = {♥}
13 1
𝑃(𝐵) = 52
= 4


● Doorsnede van gebeurtenissen 𝑃(𝐴 ∩ 𝐵)
1
𝑃(𝐴 ∩ 𝐵) = 52




5
€7,89
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 2 avis
2 semaines de cela

8 mois de cela

5,0

2 revues

5
2
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
spookslotje Vrije Universiteit Brussel
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
11
Membre depuis
5 année
Nombre de followers
1
Documents
2
Dernière vente
3 semaines de cela

Voor de liefhebbers: vlot leesbare samenvattingen van ambachtelijke makelij zonder 56 afkortingen waarover je uw kop moet breken per pagina. Vers uit de oven voor de socioloog in spe.

5,0

2 revues

5
2
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions