Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

samenvatting per hoorcollege van OIM-B

Vendu
4
Pages
31
Publié le
02-07-2019
Écrit en
2018/2019

complete samenvatting van hoorcolleges OIM-B

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
2 juillet 2019
Nombre de pages
31
Écrit en
2018/2019
Type
Notes de cours
Professeur(s)
Inconnu
Contient
Toutes les classes

Sujets

Aperçu du contenu

Samenvatting OIM-B


Hoorcollege 1 Hoofdstuk 1 en 4




Conceptuele achtergronden:
- cijfers spreken nooit voor zich
- initiële observatie → theorie → hypothese → dataverzameling → analyse → uitspraak over
de initiële observatie (inference).

VB: migratie
stap 1; identificeren van afhankelijke variabele. wat je wil gaan verklaren,
stap 2; bepalen van de mate van spreiding. mensen moeten er verschillend over denken
stap 3; opzoek naar factoren die deze spreiding kunnen verklaren. (vb: mate van geluk, angst
misdaad)
stap 4; modellen opstellen die deze spreiding kunnen wegnemen.

Soorten statistiek:
- beschrijvende statistiek: gehele populatie onderzoeken.
- verklarende statistiek: niet de gehele populatie, er is een steekproef, op basis daarvan ga je
uitspraken doen over de populatie. probleem hierbij is onzekerheid.

Begin altijd met een datamatrix. In de kolommen staan variabelen en analyse eenheden.
In een datamatrix staan alleen getallen. deze getallen worden uitgewerkt in een codeboek.

Verschillende meetniveau’s van data:
1. kwalitatieve gegevens, categorisch.
a. nominaal meetniveau. De getallen hebben geen verhouding en geen rangorde
- (geslacht, nationaliteit).
b. ordinaal meetniveau. Er is wel rangorde, maar geen verhouding tussen de getallen
- (opleidingsniveau).
De afstanden tussen de data hebben geen betekenis. hier kun je in de statistiek niet zoveel mee.

2. kwantitatieve gegevens, continue.
a. interval meetniveau. Wel rangorde en ook verhouding, maar geen nulpunt
- (IQ, temperatuur)
b. ratio meetniveau. Wel rangorde, verhouding en ook nulpunt. Iets is x meer dan het ander
- (inkomen, leeftijd).
De afstanden blijven gelijk en hebben een betekenis.

,Eigenschappen van kwantitatieve data: dia 24.
- Centrale tendentie → data heeft de neiging om zich te concentreren rondom een bepaald
punt. Dus, daar waar de meeste scores zitten.
o Gemiddelde: scores optellen / aantal waarnemingen. Data nodig: I, R
o Mediaan: middelste waarneming. Er moet rangorde zijn: O, I, R
o Modus: meest voorkomende score. Kan bij alles: N, O, I, R




- Variatie, spreiding → data heeft de neiging zich te spreiden rondom het centrale punt
o Bereik: verschil tussen de laagste en hoogste waarde (range). Een zwakke maat,
want je weet niets over de spreiding en er zijn uitschieters.
o Interkwartiel range → orden alle waarnemingen van laag naar hoog en dan pak je de
middelste 50%, vanaf Q1 t/m Q3. Boxplot.
o Variantie → het kwadraat van de standaarddeviatie
o Standaarddeviatie → je pakt van iedereen de individuele waarneming en kijkt
hoever die van het gemiddelde ligt. Deze afstand doe je in het kwadraat. Die tel je
allemaal bij elkaar op en dit deel je door (n – 1). Van dit getal neem je de wortel.




- Vorm → hoe is de data verdeeld?
o Scheefheid:
▪ Maat = skewness
▪ Symmetrische verdeling is ideaal: gemiddelde = modus = mediaan
▪ Gevolgen scheve verdeling:
➢ Gemiddelde wordt opgetrokken
➢ Spreiding wordt opgerekt
o Spitsheid:
▪ Maat = kurtosis

,De normale verdeling:
- is klokvormig, symmetrisch
- gemiddelde, mediaan en modus zijn gelijk
- heeft (in theorie) een oneindige range




Van frequentie- naar kansverdeling
- frequentieverdeling = een overzicht van de mogelijke scores en hoe vaak deze scores
voorkomen
- kansverdeling = overzicht van de mogelijke scores en de kans op die scores


Kansen onder de normale verdeling
Z-score kan iets zeggen over hoe waarschijnlijk iets is.



x−μ
Z=
σ
Hele normale verdeling kan je vertalen naar Z-score,
gemiddelde is dan altijd 0 en standaarddeviatie is 1.

De Z-score kan je ook opzoeken achterin het boek.

, Hoorcollege 2 Hoofdstuk 2

Centrale limiet stelling betrouwbaarheidsintervallen

Inductieve statistiek betreft schatten, het doel is beslissing nemen over bepaalde kenmerken van een
populatie.
Schattingsproces:
1. Populatie vaststellen
2. Steekproef trekken
3. Steekproef waarde vaststellen
4. Schatten door analyse
Als je een gemiddelde wil uitrekenen, heb je niks aan ordinaal meetniveau, waarbij de stapgrootte
niet gelijk.

Steekproevenverdeling:
1. Basis voor schatten en toetsen van hypothese
2. Theoretische kansverdeling
3. Random variabele is steekproefwaarde
a. Steekproefgemiddelde, steekproefproportie, etc
4. Resultaten van het trekken van alle mogelijke steekproeven van een vaste omvang
5. Lijst van alle mogelijke [𝑥̅ , P(X) ] paren
a. Steekproevenverdeling van het gemiddelde

Uiteindelijk zullen we op basis van steekproevenverdelingen hypotheses gaan toetsen, Hypothese-
toetsing volgende hoorcollege.
Wat is een steekproevenverdeling? Het is een theoretische kansverdeling die iets zegt over onze
steekproef. Waarom een kansverdeling? Omdat het van toeval afhangt welke mensen wij bijv gaan
ondervragen over een steekproef betreffende inkomens. Oftewel, het is een stochastische variabele.
Met een steekproevenverdeling kunnen wij populatieparameters schatten. Een parameter is een
numeriek beschrijvende maat van een populatie. Een steekproefparameter/grootheid/waarde is een
numeriek beschrijvende maat van een steekproef.
Stel dat we een gemiddelde willen bepalen van alcoholconsumptie. Populatie gemiddelde, die weten
we niet. Deze gaan we dus schatten adhv een steekproef waarbij we xstreep uitrekenen.
Ik kan deze steekproef blijven herhalen totdat ik uiteindelijk een verdeling krijg van al mijn
gemiddeldes betreffende de alcoholconsumptie. Als ik al mijn resultaten in een histogram zet dan
kijg ik een steekproevenverdeling.
Ik kan dit van het gemiddelde doen, maar ik kan dit natuurlijk ook met de mediaan doen, of de
std.dev.

Ontwikkelen van steekproefverdeling:

Maat Populatie Steekproef
Gemiddelde 𝜇 𝑥
Variantie σ2 s2

Standaarddeviatie σ s



Random is hetzelfde als stochast.
€2,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Reviews from verified buyers

Affichage de tous les avis
4 année de cela

1,0

1 revues

5
0
4
0
3
0
2
0
1
1
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
IRadboud Radboud Universiteit Nijmegen
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
135
Membre depuis
7 année
Nombre de followers
100
Documents
44
Dernière vente
8 mois de cela

3,5

22 revues

5
6
4
9
3
2
2
0
1
5

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions