Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Lecture Notes on Vector Spaces and Linear Transformations (COMP11120)

Note
-
Vendu
-
Pages
2
Publié le
30-05-2024
Écrit en
2023/2024

Master the fundamentals of vector spaces and linear transformations with these comprehensive lecture notes for COMP11120. These notes cover key topics such as vector spaces, subspaces, bases, dimension, linear transformations, matrix representations, eigenvalues, and eigenvectors. With clear explanations, illustrative examples, and essential theorems, these notes are designed to help you understand and apply complex concepts with confidence. Perfect for students enrolled in COMP11120 or anyone interested in self-study, these notes provide a structured and organized approach to learning. Benefit from expert tips, visual aids, and concise summaries to enhance your understanding and excel in your exams. Get your copy now and take your mathematical skills to the next level!

Montrer plus Lire moins
Établissement
Cours








Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Inconnu
Cours

Infos sur le Document

Publié le
30 mai 2024
Nombre de pages
2
Écrit en
2023/2024
Type
Notes de cours
Professeur(s)
Andrea schalk
Contient
Vector spaces and linear transformations

Sujets

Aperçu du contenu

Vector Spaces and Linear Transformations

Vectors
Definition A vector is
simply an ordered n-tuple of real numbers VI , Va
, ...,
Un Examples :



2
V
, Va , ...,Un are called the components or entries of .


= = R
1




ERb
-

2 4
We has dimension a c E
say X n.
O

-

1

Vi
We write : E An
Va
V
R
=
-
is the set of all n-dimensional vectors called n
: ,


Un
dimensional real space .




Vector Operations
Vector Addition Multiplication by a scalar a ER Vector Substraction

V, qV,
a
WI Vi + wi
V2 Wa & V2
( w)

Vatwa av V w =
V +
= =

t = -


+ w =
:
I
: :
in
:
Un Wn Vn + Wn XVn where -w is shorthand for 1-1) ef




Zero Vector in Ru Position Vectors in R2
A vector with n entries
equal to 0
. ↓ =
(Y) and w =
(w) as position vectors

Zero Vector
ya
O so(V , Val
8
8 =
In entries (W , Wa&
V
: q
W
8 -




E &
V X




Equality in Rh Every point (vi , va) is uniquely represented as a position vector.
Vectors are ordered tuples of numbers : (2) * (2)
Vector Let and w be victors in Rh General View of Vectors R2
Equality 1 in


Then1 =
w if
N *
y
V = Wi
, Va = Wa , ..., Un =
Wh V
-
4-




V =
Y as
free vector
3-
-vej -



2 -




------
*




i
1 - Vil =



M



= It's n

The components V, and
ve of 1 are viewed as displacements wrt .
the unit vectors i andj in the
coordinate system .




Laws for vectors in Rh

Let , V ,
we Rh L , X , we R" and a,B be any scalars (real numbers)
·
V + w =
W + V commutativity ·
x (V + w) = XV + xW distributivity
O
u + (k + w) = (u + 1) + w associativity ·
(x + B(v = xx + B

·
V + 0 =V & is the additive unit. ·
x(B1) =
(xB) mixed associativity
0 + k =
V · /k =
V multiply with 1

· + ( 1)
-
= 0 -

V is the additive inverse



(x) + V = Q Of Y · Ov =
0 multiply with scalar O

·
x0 =
0 multiply witha vector 3
·
(-Nk = (v) = x( x)
-




multiply with negatives
€7,11
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
jpxoi

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
jpxoi The University of Manchester
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
1 année
Nombre de followers
0
Documents
20
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions