Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting WISKUNDE voor bedrijfskundigen II theorie

Vendu
87
Pages
119
Publié le
18-05-2019
Écrit en
2018/2019

Heldere uitgetypte samenvatting van alle hoorcolleges gegeven door prof. Philippe Carette in het academiejaar , inclusief alle bewijzen. In deze samenvatting komt de theorie van Wiskunde 2 aan bod. In het oorspronkelijk document zaten er fouten. Deze zijn gecorrigeerd en het document is geüpdatet.

Montrer plus Lire moins















Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
18 mai 2019
Fichier mis à jour le
30 juillet 2019
Nombre de pages
119
Écrit en
2018/2019
Type
Resume

Aperçu du contenu

.




Wiskunde voor bedrijfskundigen II
Theorie




Handelswetenschappen
Academiejaar 2018-2019

,Inhoudsopgave

Theorie
1 Hoofdstuk 1.................................................................................................................................................................1
1.1 Hoorcollege 1....................................................................................................................................................1
2 Hoofdstuk 2.............................................................................................................................................................. 15
2.1 Hoorcollege 2................................................................................................................................................. 15
3 Hoofdstuk 3.............................................................................................................................................................. 29
3.1 Hoorcollege 3................................................................................................................................................. 29
4 Hoofdstuk 4.............................................................................................................................................................. 38
4.1 Hoorcollege 3................................................................................................................................................. 38
4.2 Hoorcollege 4................................................................................................................................................. 43
4.3 Hoorcollege 5................................................................................................................................................. 50
5 Hoofdstuk 5.............................................................................................................................................................. 57
5.1 Hoorcollege 5................................................................................................................................................. 57
5.2 Hoorcollege 6................................................................................................................................................. 62
6 Hoofdstuk 6.............................................................................................................................................................. 74
6.1 Hoorcollege 7................................................................................................................................................. 74
6.2 Hoorcollege 8................................................................................................................................................. 87
7 Hoofdstuk 7.............................................................................................................................................................. 95
7.1 Hoorcollege 9................................................................................................................................................. 95
7.2 Hoorcollege 10 ........................................................................................................................................... 110

,Bewijzen
1. Logistische groei .............................................................................................................................................. 27

𝑎 𝑏 𝑐
2. |0 𝑑 𝑒 | = 𝑎𝑑𝑓 ............................................................................................................................................. 34
0 0 𝑓

𝑎 0 0
3. |𝑏 𝑐 0| = 𝑎𝑐𝑓 .............................................................................................................................................. 34
𝑑 𝑒 𝑓

𝑎 𝑏 𝑎 𝑐
4. | |=| | ............................................................................................................................................... 35
𝑐 𝑑 𝑏 𝑑

𝑎 𝑏 𝑏 𝑎
5. | | = −| | ........................................................................................................................................... 35
𝑐 𝑑 𝑑 𝑐

𝑎 𝑏 𝜆𝑐 𝑎 𝑏 𝑐
6. |𝑑 𝑒 𝜆𝑓| = 𝜆 |𝑑 𝑒 𝑓 | .......................................................................................................................... 36
𝑒 ℎ 𝜆𝑖 𝑔 ℎ 𝑖

𝑎 𝑏 𝑎 𝑏
7. | |=| | .......................................................................................................................... 36
𝑐 + 𝜆𝑎 𝑑 + 𝜆𝑏 𝑐 𝑑

8. Stelling. 𝐴 heeft een inverse ⟹ 𝐴 regulier ( d.w.z. det(𝐴) ≠ 0) ............................................... 47

9. Stelling. Als 𝐵 en 𝐵′ inverse matrices zijn van 𝐴, dan 𝐵 = 𝐵′. ................................................... 47

1
10. Als 𝐴 regulier is, dan is de matrix 𝐴−1 = det(𝐴) adj 𝐴 De enige inverse matrix van 𝐴......... 47


11. (𝐴𝐵)−1 = 𝐵−1 𝐴−1 ............................................................................................................................................ 48

1
12. (𝑟𝐴)−1 = 𝐴−1 .................................................................................................................................................. 48
𝑟


13. (𝐴𝑇 )−1 = (𝐴−1 )𝑇 .............................................................................................................................................. 49

14. Karakteristieke vergelijking det(𝐴 − 𝜆𝐸𝑚 ) = 0. ................................................................................ 60

15. 𝐴𝑢 = 𝜆𝑢. .............................................................................................................................................................. 68


16. 𝐴𝑡 𝑣 = 𝑐1 𝜆1𝑡 𝑣1 + 𝑐2 𝜆𝑡2 𝑣2 + ⋯ + 𝑐𝑝 𝜆𝑡𝑝 𝑝 ................................................................................................ 68

d𝑓 (𝑥 ∗ ,𝑦 ∗ )
17. d𝑐
= 𝜆∗ ....................................................................................................................................................115

,Theorie

, 1 Hoofdstuk 1
1.1 Hoorcollege 1

Bepaalde integraal
 Definitie
 Interpretatie: oppervlakte
 Belangrijkste eigenschappen
 Economische toepassing: consumenten- en producentensurplus

Oneigenlijke integralen
 Definities
 Voorbeelden
 Convergentie en divergentie

 Bepaalde integraal



Bij een bepaalde integraal ga je de
oppervlakte berekenen van gebieden die
begrensd zijn door rechten /functies /
curves / grafieken…




Definitie 𝑎 = ondergrens / 𝑏 = bovengrens
Zij 𝑓 continu op [ 𝑎, 𝑏 ], dan
𝑏 𝑏 = altijd een getal als uitkomst → geen 𝑥-waarde
∫ 𝑓(𝑥) 𝑑𝑥 = [ 𝐹(𝑥) ] = 𝐹(𝑏) − 𝐹(𝑎) → geen functie
𝑎 𝑎


Waarbij 𝐹 een primitieve functie is van 𝑓 op ] 𝑎, 𝑏 [.
𝑎𝑙𝑠
𝐹 is een primitieve van 𝑓 ⇔ 𝐹 ′ = 𝑓




1

, Voorbeeld
1 1
∫ (2𝑥 + 1) 𝑑𝑥 = [ 𝑥 2 + 𝑥 ] = (12 + 1) − (02 + 0) = 2 (bij moeilijke functies kan men dus gebruik
0 0 maken van P.I. of substitutiemethode.


𝑓 𝐹 𝐹(1) 𝐹(0)

Opmerking

Men mag de integratieconstante weglaten bij het vinden van 𝐹(𝑥).

[𝑥 2 + 𝑥 + 𝐶]10 = 𝐹(1) − 𝐹(0) = (12 + 1 + 𝐶) − (02 + 0 + 𝐶) +𝐶 − (+𝐶) = 0
⟶ 𝐶 valt weg
⟶ indien je ze wel schrijft, geen probleem. Hiervoor zullen geen
punten voor worden afgetrokken.

 Oppervlakte als 𝑓 positief op [ 𝑎, 𝑏 ]

𝑏
𝐴 = ∫ 𝑓(𝑥) 𝑑𝑥
𝑎




 Oefening

Bereken de oppervlakte van het vlakdeel begrensd door de grafiek van 𝑦 = 2𝑥 + 1, de 𝑋-as, de
𝑌-as en de rechte 𝑥 = 1.

1+3
1. oppervlakte = ( )∙1=2
2
1
2. de bepaalde integraal: oppervlakte = ∫ (2𝑥 + 1) 𝑑𝑥
0
1
= [ 𝑥 2 + 𝑥 ]0

= (12 + 1) − (02 + 0)
=2−0=2
𝑏1 + 𝑏2
De oppervlakte (een trapezium) heeft als formule ∙ℎ
2
OF
De oppervlakte van een rechthoek + driehoek



2

, Opgelet!

Opmerking: wanneer een functie over een (gedeeltelijk) negatief oppervlakte beschikt, zoals
hieronder, moet je de positieve oppervlakte splitsen met de negatieve oppervlakte. Bij het negatief
oppervlak moet je als volgt een minteken ervoor plaatsen. Achteraf sommeren we de twee
oppervlaktes om de totale oppervlakte te weten.


Oppervlakte = 8,

MAAR
2 2
𝑥4 24 (−2)4
∫ 𝑥 3 𝑑𝑥 ≠ 8 =[ ] = − = 4− 4 = 0 ???
−2 4 −2 4 4
𝐴1
REDEN?
𝐴2

2 2
𝑥4 24 04
𝐴1 : ∫ 𝑥 3 𝑑𝑥 = [ ] = − =4
0 4 0 4 4
0 0
3
𝑥4 04 (−2)4
𝐴2 : − ∫ 𝑥 𝑑𝑥 = − [ ] = − [ − ] = −(0 − 4) = 4
−2 4 −2 4 4
4+4

 Oppervlakte als 𝑓 negatief op [ 𝑎, 𝑏 ]

𝑏 Dit oppervlakte is al negatief in dit geval.
𝐴 = − ∫ 𝑓(𝑥) 𝑑𝑥 Door er een minteken voor te plaatsen wordt
𝑎 de oppervlakte positief.




3

,  Oppervlakte tussen twee grafieken

Één snijpunt




𝐴2
𝐴1




𝑐 𝑏
Oppervlakte: ∫ (𝑔(𝑥) − 𝑓(𝑥)) 𝑑𝑥 + ∫ (𝑓(𝑥) − 𝑔(𝑥)) 𝑑𝑥
𝑎 𝑐



𝐴1 𝐴2


… …
Het basisidee is: oppervlakte tussen twee grafieken: [∫ boven 𝑓 − ∫ onder 𝑓 ]
… …




𝑨𝟏



= −



𝑎 𝑐 𝑎 𝑐 𝑎 𝑐


𝑐 𝑐
𝐴1 = ∫ 𝑔(𝑥) 𝑑𝑥 − ∫ 𝑓(𝑥) 𝑑𝑥
𝑎 𝑎



𝑨𝟐



= −



𝑐 𝑏 𝑐 𝑏 𝑐 𝑏


𝑏 𝑏
𝐴2 = ∫ 𝑓(𝑥) 𝑑𝑥 − ∫ 𝑔(𝑥) 𝑑𝑥
𝑐 𝑐


4
€8,49
Accéder à l'intégralité du document:
Acheté par 87 étudiants

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de 7 avis sur 15
5 année de cela

4 année de cela

4 année de cela

5 année de cela

3 année de cela

5 année de cela

3 année de cela

4,3

15 revues

5
6
4
8
3
1
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
nicolasdewulf Universiteit Gent
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
257
Membre depuis
7 année
Nombre de followers
177
Documents
0
Dernière vente
19 heures de cela

3,9

39 revues

5
13
4
16
3
7
2
1
1
2

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions