Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting WISKUNDE voor bedrijfskundigen II bewijzen

Vendu
53
Pages
13
Publié le
18-05-2019
Écrit en
2018/2019

Uitgetypt document van alle te kennen bewijzen van Wiskunde 2 (Academiejaar ). Gegeven door prof. Philippe Carette.












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
18 mai 2019
Fichier mis à jour le
30 juillet 2019
Nombre de pages
13
Écrit en
2018/2019
Type
Resume

Aperçu du contenu

.




Wiskunde voor bedrijfskundigen II
Bewijzen




Handelswetenschappen
Academiejaar 2018-2019

,Bewijzen
1. Logistische groei ................................................................................................................................................. 1

𝑎 𝑏 𝑐
2. |0 𝑑 𝑒 | = 𝑎𝑑𝑓 ................................................................................................................................................ 2
0 0 𝑓

𝑎 0 0
3. |𝑏 𝑐 0| = 𝑎𝑐𝑓 ................................................................................................................................................. 2
𝑑 𝑒 𝑓

𝑎 𝑏 𝑎 𝑐
4. | |=| | .................................................................................................................................................. 2
𝑐 𝑑 𝑏 𝑑

𝑎 𝑏 𝑏 𝑎
5. | | = −| | .............................................................................................................................................. 3
𝑐 𝑑 𝑑 𝑐

𝑎 𝑏 𝜆𝑐 𝑎 𝑏 𝑐
6. |𝑑 𝑒 𝜆𝑓| = 𝜆 |𝑑 𝑒 𝑓 | ............................................................................................................................. 3
𝑒 ℎ 𝜆𝑖 𝑔 ℎ 𝑖

𝑎 𝑏 𝑎 𝑏
7. | |=| | ............................................................................................................................. 4
𝑐 + 𝜆𝑎 𝑑 + 𝜆𝑏 𝑐 𝑑

8. Stelling. 𝐴 heeft een inverse ⟹ 𝐴 regulier ( d.w.z. det(𝐴) ≠ 0) .................................................. 4

9. Stelling. Als 𝐵 en 𝐵′ inverse matrices zijn van 𝐴, dan 𝐵 = 𝐵′. ...................................................... 5

1
10. Als 𝐴 regulier is, dan is de matrix 𝐴−1 = det(𝐴) adj 𝐴 De enige inverse matrix van 𝐴............ 5


11. (𝐴𝐵)−1 = 𝐵−1 𝐴−1 ............................................................................................................................................... 6

1
12. (𝑟𝐴)−1 = 𝐴−1 ..................................................................................................................................................... 7
𝑟


13. (𝐴𝑇 )−1 = (𝐴−1 )𝑇 ................................................................................................................................................. 7

14. Karakteristieke vergelijking det(𝐴 − 𝜆𝐸𝑚 ) = 0. ................................................................................... 8

15. 𝐴𝑢 = 𝜆𝑢. ................................................................................................................................................................. 9


16. 𝐴𝑡 𝑣 = 𝑐1 𝜆1𝑡 𝑣1 + 𝑐2 𝜆𝑡2 𝑣2 + ⋯ + 𝑐𝑝 𝜆𝑡𝑝 𝑝 ................................................................................................ 10

d𝑓 (𝑥 ∗ ,𝑦 ∗ )
17. d𝑐
= 𝜆∗ ...................................................................................................................................................... 11

,  Logistische groei
Bewijs
Punt van snelste aangroei

 Uit D.V.
1 d𝑦 𝑦
= 𝑎 (1 − )
𝑦 d𝑡 𝑁

 Volgt Buigpunt? Via tweede afgeleide → 𝑦 ′′ =? Stel = 0

d𝑦 𝑦 𝑌
= 𝑎 𝑦 (1 − ) 1. 𝑦 ′ = 𝑎 𝑦 (1 − ) 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑟𝑒𝑔𝑒𝑙
d𝑡 𝑁 𝑁

𝑌 ↑ 𝑌 1
2. 𝑦 ′′ = [𝑎 𝑦 (1 − )] ⇒ 𝑎 [𝑦 ′ (1 − ) + 𝑦 (− ) 𝑦′]
 En dus ook (via de productregel) 𝑁 𝑁 𝑁
𝑌 𝑌
= 𝑎 𝑦 ′ [(1 − ) − ]
𝑁 𝑁
d2 𝑦 d𝑦 2𝑦 2𝑌
2
=𝑎 (1 − ) ′
= 𝑎 𝑦 (1 − )
d𝑡 d𝑡 𝑁 𝑁

↓ ↓ ↓
1. 2. 3.

Wanneer is het buigpunt nu nul?
1. 𝑎 kan niet 0 zijn. Het is een evenredigheidsconstante
2. 𝑑𝑦/𝑑𝑡 is een functie en de afgeleide kan nooit 0 zijn want de functie stijgt altijd (zie grafiek)
3. Blijft over, dus
2𝑌 𝑁
1− =0 ⟺ 𝑦=
𝑁 2


 Nuttige eigenschappen

1. Zijn alle elementen onder (boven) de hoofddiagonaal gelijk aan nul, dan is de determinant
gelijk aan het product van de elementen op de hoofddiagonaal.
2. Een determinant verandert niet als men het onderliggend getallenschema transponeert
(d.w.z. eerste rij wordt eerste kolom, tweede rij wordt tweede kolom enz.)
3. Als men 2 rijen (kolommen) onderling van plaats verwisselt, wijzigt de determinant van
teken.
Gevolg: Een determinant met twee identieke rijen (kolommen) is steeds gelijk aan nul.
4. Als men elk element van één rij (kolom) vermenigvuldigt met eenzelfde getal 𝜆, dan wordt
de volledige determinant met dit getal 𝜆 vermenigvuldigd.
5. Als men bij een rij (kolom) een veelvoud van een andere rij (kolom) optelt, dan verandert de
determinant niet.




1

,  Eigenschap 1

Zijn alle elementen onder (boven) de hoofddiagonaal gelijk aan nul, dan is de determinant gelijk
aan het product van de elementen op de hoofddiagonaal.

Voorbeelden

𝑎 𝑏 𝑐
Bewijs
 |0 𝑑 𝑒 | = 𝑎𝑑𝑓
0 0 𝑓

Bewijs: ⟶ ontwikkel rij 3

𝑎 𝑏 𝑐
|0 𝑑 𝑒 | = 0 ∙ 𝐴31 + 0 ∙ 𝐴32 + 𝑓 ∙ 𝐴33 ⟶ |𝑎 𝑏
| = 𝑎𝑑 − 0𝑏 = 𝑎𝑑 ⟶ 𝑓 ∙ 𝑎𝑑 = 𝑎𝑑𝑓
0 0 𝑓 0 𝑑

𝑎 0 0
|𝑏 𝑐 0| = 𝑎𝑐𝑓
Bewijs
𝑑 𝑒 𝑓

Bewijs: ⟶ ontwikkel kolom 3

𝑎 0 0
|𝑏 𝑐 0| = 0 ∙ 𝐴13 + 0 ∙ 𝐴23 + 𝑓 ∙ 𝐴33 ⟶ |𝑎 0
| = 𝑎𝑐 − 0𝑏 = 𝑎𝑐 ⟶ 𝑓 ∙ 𝑎𝑐 = 𝑎𝑐𝑓
𝑑 𝑒 𝑓 𝑏 𝑐

Deze eigenschap zegt specifiek dat dit enkel werkt met de hoofddiagonaal. (van linksboven naar
rechtsonder). Wat indien met de nevendiagonaal? (van rechtsboven naar linksonder).

0 0 3 ≠
Vb: |0 2 5| ≠ 1 ∙ 2 ∙ 3 = 6
1 −2 6

0 3
Kolom 1: = 0 ∙ 𝐴11 + 0 ∙ 𝐴21 + 1 ∙ 𝐴31 = 1 ∙ 𝐴31 = 1 ∙ | | = −6
2 5

 Eigenschap 2

Een determinant verandert niet als men het onderliggend getallenschema transponeert (d.w.z.
eerste rij wordt eerste kolom, tweede rij wordt tweede kolom enz.)
Transponeren = je wisselt rijen met kolommen en kolommen met rijen.
Voorbeeld

𝑎 𝑏 𝑎 𝑐
| |=| |
𝑐 𝑑 𝑏 𝑑
Bewijs Bewijs:


𝑎𝑑 − 𝑏𝑐 = 𝑎𝑑 − 𝑐𝑏

Bij andere ordes geldt dit ook, maar enkel van deze orde moet je het bewijs kennen.



2
€2,99
Accéder à l'intégralité du document:
Acheté par 53 étudiants

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 4 avis
2 année de cela

4 année de cela

4 année de cela

6 année de cela

4,5

4 revues

5
2
4
2
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
nicolasdewulf Universiteit Gent
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
257
Membre depuis
7 année
Nombre de followers
177
Documents
0
Dernière vente
18 heures de cela

3,9

39 revues

5
13
4
16
3
7
2
1
1
2

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions