BIOCHEMIE:
METABOLISME I
SAMENVATTING
Jarne Winderickx
,1. Herhaling en verdieping van aspecten rond enzymatische
mechanismen............................................................................ 7
1.1 Inleiding.....................................................................................7
1.2 Specificiteit van enzymen............................................................7
1.2.1 Substraatspecificiteit..........................................................................................7
1.2.2 Geometrische specificiteit...................................................................................7
1.2.3 Stereospecificiteit...............................................................................................7
1.3 Cofactoren.................................................................................7
1.4 Transitietoestand theorie............................................................8
1.5 Enzymatische mechanismen........................................................8
1.5.1 Zuur base katalyse.............................................................................................. 8
1.5.2 Covalente katalyse..............................................................................................9
1.5.3 Metaalion katalyse..............................................................................................9
1.5.4 Andere................................................................................................................ 9
1.6 Enzymkinetiek............................................................................9
1.6.1 chemische kinetiek.............................................................................................9
1.6.2 Michaelis-Menten kinetiek...................................................................................9
1.7 Bisubstraat reacties..................................................................10
1.7.1 Sequentiële reacties......................................................................................... 10
1.7.2 Pingpong reacties.............................................................................................. 10
1.8 Inhibitie en regulatie.................................................................10
1.8.1 Competitieve inhibitie.......................................................................................11
1.8.2 Niet-competitieve inhibitie................................................................................11
1.8.3 Gemengde inhibitie........................................................................................... 11
1.9 Geneesmiddelen: HIV remmers..................................................11
1.10 Regulatie................................................................................11
1.10.1 Controle op niveau van enzymgehalte............................................................12
1.10.2 Regulatie op conformationele / structurele niveau..........................................12
1.10.2.1 Allosterische regulatie..............................................................................12
1.10.2.2 Covalente modificaties.............................................................................12
1.10.2.3 Overgang van T naar R toestand: allosterische en covalente regulaties...12
2.Hormonen en signaaltransductie...........................................12
2.1 Signaalmoleculen......................................................................13
2.2 Hormoonsignalisatie.................................................................13
2.2.1 Functies............................................................................................................. 13
2.3 Hormoon-klassen......................................................................13
2.3.1 Pancreatische hormonen...................................................................................13
2.3.2 Cathecholamines: Epinefrine en norepinefrine (adrenaline en nonadrenaline...14
2.3.3 Steroïde hormonen........................................................................................... 14
2.3.4 Groeihormonen (GH)......................................................................................... 14
2.4 Binding van hormonen aan receptoren geeft aanleiding tot
signaalcascaden.............................................................................14
2.4.1 Receptor tyrosine kinasen.................................................................................14
2.4.1.1 Proteïne fosfatasen.....................................................................................14
2.4.3 G-proteïne gekoppelde receptoren / GPCR........................................................15
1
, 2.5 Adenylaat cyclase pathway........................................................15
2.5.1 cAMP................................................................................................................. 15
2.5.2 PKA / proteïne kinase A.....................................................................................15
2.5.3 Remming van adenylaat cyclase.......................................................................16
2.6 Fosfoïnositide pathway.............................................................16
2.6.1 Calmoduline...................................................................................................... 16
3. Inleiding van het metabolisme..............................................16
3.1 Cellulaire energiewinning..........................................................16
3.2 Metabole pathways...................................................................17
3.2.1 NADH vs NADPH................................................................................................ 17
3.2.2 Rol van enzymen............................................................................................... 17
3.2.3 Cellulaire locatie............................................................................................... 17
3.2.4 Lactaat dehydrogenase.....................................................................................18
3.2.5 Algemene kenmerken.......................................................................................18
3.3 Thermodynamische aspecten.....................................................18
3.3.1 Regulatie: 3 vormen.......................................................................................... 18
3.4 Hoogenergetische verbindingen................................................18
3.4.1 ATP / adenosine trifosfaat.................................................................................19
3.4.2 Andere verbindingen......................................................................................... 19
3.5 Redoxreacties...........................................................................20
3.5.1 Thermodynamische aspecten...........................................................................20
3.6 Experimentele benaderingen om metabolisme te bestuderen......20
4. Suikermetabolisme: glucose katabolisme..............................21
4.1 De eerste 5 reactiestappen: vorming 2 molc GAP........................21
4.1.1 Reactie 1: hexokinase (HK)...............................................................................21
4.1.2 Reactie 2: Fosfogluco isomerase (PGI)..............................................................22
4.1.2.1 Mechanisme............................................................................................... 22
4.1.2.2 enzymenspecificiteit van PGI......................................................................22
4.1.3 Reactie 3: Fosfofructokinase (PFK)....................................................................22
4.1.4 Reactie 4: Splitsingsreactie / Aldolase...............................................................23
4.1.4.1 mechanisme voor klasse I..........................................................................23
4.1.4.2 Klasse II...................................................................................................... 24
4.1.5 Reactie 5: Triosefosfaat isomerase (TIM) / tussenreactie...................................24
4.1.5.1 mechanisme............................................................................................... 24
4.1.6 Recap................................................................................................................ 24
4.2 De volgende 5 reactiestappen (alles wat volgt x2: 2 molc GAP). . .24
4.2.1 Reactie 6: Glyceraldehyde-3-fosfaat dehydrogenase........................................24
4.2.1.1 Experimenten............................................................................................. 24
4.2.1.2 Mechanisme............................................................................................... 25
4.2.2 Reactie 7: fosfoglyceraat kinase (PGK)..............................................................25
4.2.3 Reactie 8: fosfoglyceraat mutase (PGM)...........................................................26
4.2.3.1 Mechanisme............................................................................................... 26
4.2.3.2 Rode bloedcellen (RBC)..............................................................................26
4.2.4 Reactie 9: enolase............................................................................................. 27
4.2.5 Reactie 10: pyruvaat kinase (PK)......................................................................27
4.3 Glycolyse: besluiten..................................................................27
4.4 Vervolgstappen: regeneratie NAD+............................................27
4.4.1 Homolactische fermentatie...............................................................................27
2
, 4.4.2 Alcohol fermentatie........................................................................................... 28
4.4.2.1 Pyruvaat decarboxylase (PDC)....................................................................28
4.4.2.2 Alcohol dehydrogenase (ADH)....................................................................28
4.4.3 Pasteur effect.................................................................................................... 29
4.5 Aerobe processen: skip.............................................................29
4.6 Wit vs rood vlees: lees dia 76 -77...............................................29
4.7 Controle van glycolyse..............................................................29
4.7.1 Fosfofructokinase (PFK) + regulatie door ATP...................................................29
4.7.1.2 Rol van AMP................................................................................................ 30
4.7.1.2 Substraat cycling........................................................................................30
4.7.2 Glucosetransport............................................................................................... 31
4.7.3 Rol van hexokinase........................................................................................... 31
4.7.4 glycolyse en kanker: bekijk dia 34-36...............................................................31
4.8 Metabolisme van andere hexosesuikers.....................................31
4.8.1 Fructose............................................................................................................ 31
4.8.1.1 Fructose pathway in lever...........................................................................31
4.8.1.2 Regulatie + deficiënties..............................................................................32
4.8.2 Galactose.......................................................................................................... 32
4.8.2.1 Mechanisme............................................................................................... 32
4.8.2.2 Regulatie + deficiënties..............................................................................33
4.8.3 Mannose........................................................................................................... 33
4.9 Pentosefosfaat pathway / Shunt (belangrijk)..............................33
4.9.1 Pathway in 3 stappen........................................................................................33
4.9.1.1 Eerste stap: oxidatieve reacties leveren NADPH en ribulose-5-P................33
4.9.1.2 Tweede stap: Isomerisatie + epimerisatie van ribulose-5-P........................34
4.9.1.3 Derde stap: C-C splitsingen + herschikkingen die C5 suikers omzetten in C6
en C3 suikers.......................................................................................................... 34
4.9.2 Regulatie........................................................................................................... 34
4.9.3 Deficiëntie van G6P dehydrogenase.................................................................35
5. Glycogeenmetabolisme + Gluconeogenese............................35
5.1 Inleiding...................................................................................35
5.2 Glycogeen: chemie....................................................................36
5.3 Glycogeen: afbraak...................................................................36
5.3.1 Glycogeen fosforylase.......................................................................................36
5.3.1.1 Glycogeen-bindingsplaats...........................................................................37
5.3.1.2 Cofactor: pyridoxaal-5-P / PLP.....................................................................37
5.3.1.3 Mechanisme van enzym.............................................................................38
5.3.1.4 Allosterische en covalente regulatie...........................................................38
5.3.2 Glycogeen debranching enzym.........................................................................39
5.3.3 Fosfoglucomutase............................................................................................. 39
5.4 Glycogeen: synthese.................................................................39
5.4.1 UDP-glucose pyrofosforylase.............................................................................39
5.4.2 Glycogeen synthase.......................................................................................... 39
5.4.2.1 Regulatie.................................................................................................... 39
5.4.2.2 Keteninitiatie via glycogenine.....................................................................40
5.4.3 Branching enzym.............................................................................................. 40
5.5 Defecten in het glycogeenmetabolisme: stapelingsziekten..........40
5.6 Controle van het glycogeenmetabolisme....................................40
3
, 5.6.1 Allosterische controle........................................................................................40
5.6.2 Covalente controle: fosforylatie........................................................................41
5.6.3 Hoe wordt fosforylase geactiveerd....................................................................41
5.6.3.1 Proteïne kinase A (PKA)..............................................................................41
5.6.3.2 Fosforylase kinase (Phk).............................................................................41
5.6.3.3 Fosfoproteïne fosfatase I (PP1)...................................................................42
Regulatie in spieren............................................................................................ 42
Regulatie in lever................................................................................................ 43
5.6.3.4 Regulatie glycogeen synthase....................................................................43
5.6.4 Hormonale controle........................................................................................... 43
5.6.4.1 Lever.......................................................................................................... 44
5.6.4.2 Spier........................................................................................................... 45
5.6.5 Diabetes............................................................................................................ 45
5.7 Gluconeogenese.......................................................................45
5.7.1 Pathway............................................................................................................ 46
5.7.1.1 Reactie 1: omzetting van pyruvaat tot fosfoenolpyruvaat (PEP).................46
5.7.1.2 Andere bypassreacties................................................................................47
5.7.1.3 Alle andere reacties....................................................................................48
5.7.1.4 Algemeen................................................................................................... 48
5.7.2 Cellulaire lokalisatie.......................................................................................... 48
5.7.3 Regulatie ban gluconeogenese.........................................................................49
5.7.3.1 F26BP......................................................................................................... 49
5.7.3.2 Andere allosterische effectoren..................................................................50
5.7.3.3 Genetische controle....................................................................................50
6. Citroenzuurcyclus................................................................50
6.1 Inleiding...................................................................................50
6.2 Overzicht citroenzuurcyclus / CTZ..............................................50
6.3 Kenmerken...............................................................................50
6.4 Vooraf: synthese acetyl-coenzyme A / acetyl-CoA........................51
6.4.1 Multi-enzym complex: Pyruvaatdehydrogenase-complex..................................51
6.4.1.1 Pyruvaatdehydrogenase / E1......................................................................51
6.4.1.2 Dihydrolipoyltransacetylase / E2.................................................................52
6.4.1.3 E2 katalyseert een transesterificatie reactie...............................................52
6.4.1.4 Regeneratie E2 door dihydrolipoyldehydrogenase / E3...............................52
6.4.1.5 Regeneratie E3 + eiwitstructuur E3............................................................53
6.4.2 Hoe reactie-intermediairen van E2 naar E1 en E3 doorgeven...........................53
6.5 Redoxreacties in CTZ................................................................53
6.5.1 Reductiepotentiaal van FAD..............................................................................54
6.6 Enzymen van CTZ......................................................................54
6.6.1 enzym 1: Citraatsynthase.................................................................................54
6.6.1.1 Reactiemechanisme...................................................................................54
6.6.2 Enzym 2: Aconitase........................................................................................... 55
6.6.2.1 Mechanisme............................................................................................... 55
6.6.3 enzym 3: Isocitraatdehydrogenase...................................................................55
6.6.4 enzym 4: -ketoglutaraat dehydrogenase (multi-enzymcomplex)......................55
6.6.5 enzym 5: Succinyl-CoA synthetase...................................................................56
6.6.6 enzym 6: Succinaatdehydrogenase...................................................................57
6.6.7 enzym 7: Fumarase / fumaraathydratase..........................................................57
6.6.8 Malaatdehydrogenase.......................................................................................57
6.7 Energie balans..........................................................................57
4
, 6.8 Regulatie van de CTZ................................................................57
6.8.1 Regulatie van pyruvaatdehydrogenase.............................................................58
6.8.1.1 Productinhibitie door acetyl-CoA + NADH...................................................58
6.8.1.2 Covalente modificatie van E1.....................................................................58
6.8.1.2 Andere regulatoren.....................................................................................58
6.8.2 Hartspieren....................................................................................................... 58
6.8.3 Snelheidsbepalende enzymen van de CTZ........................................................59
6.8.3.1 Additionele regulatorische mechanismen...................................................59
6.9 Reacties gerelateerd aan CTZ....................................................59
6.9.1 Kataplerotische reacties....................................................................................60
6.9.2 Anaplerotische reacties.....................................................................................60
6.9.3 Vetten omzetten tot suikers?............................................................................61
6.10 Glyoxylaatcyclus.....................................................................61
7. Mitochondriale ATP synthese................................................62
7.1 Elektronentransfer en oxidatieve fosforylatie.............................62
7.2 Mitochondriën en transporters..................................................62
7.2.1 Transportsystemen............................................................................................ 62
7.3 Elektronentransport..................................................................63
7.3.1 Thermodynamica.............................................................................................. 63
7.3.2 Elektronentransportketen / ETC.........................................................................63
7.3.3 Complex I: NADH-coenzyme Q oxidoreductase)................................................64
7.3.3.1 Cofactoren van complex I...........................................................................64
7.3.3.2 Mechanisme van H+ translocatie van complex I........................................65
7.3.4 Complex II: succinaat-coenzyme Q oxidoreductase..........................................66
7.3.5 Complex III: coenzyme-Q-cytochroom c oxidoreductase...................................67
7.3.5.1 Q-cyclus: e-transport en H+ translocatie van complex III...........................67
7.3.5.2 Cytochroom c............................................................................................. 68
7.3.6 Complex IV: cytochroom c oxidase....................................................................69
7.3.7 Oxidatieve fosforylatie......................................................................................71
7.3.7.1 ATP synthase / complex V / F1F0-ATPase....................................................72
Translocatie H+ doorheen F0 subeenheid...........................................................73
ATP synthese: 3 katalytische promotors (3 paren)..............................................73
Koppeling beide stappen.....................................................................................74
7.3.7.2 P/O verhouding: hoeveel ATP vormen per 2 elektronen afkomstig van NADH
............................................................................................................................... 74
7.4 Controle op oxidatieve fosforylatie............................................74
7.5 Controle op oxidatief metabolisme.............................................75
8. Fotosynthese.......................................................................76
8.1 Chloroplasten...........................................................................76
8.2 Stap 1: Captatie van licht..........................................................76
8.3 Stap 2: Lichtreacties.................................................................77
8.3.1 Gebruik van licht............................................................................................... 77
8.3.1.1 Fotosynthese planten en cyanobacteriën: Z-schema..................................78
8.4 Donkerreacties / calvin cyclus (niet cyclus vanbuiten kennen).....81
5
,6
,1. HERHALING EN VERDIEPING VAN ASPECTEN ROND ENZYMATISCHE
MECHANISMEN
1.1 INLEIDING
Enzymen = katalytische eiwitten + onderscheiding chemische
katalysatoren: 1) hogere reactiesnelheden 2) mildere
reactieomstandigheden (fysiologisch milieu) 3) hoge specificiteit 4)
regulatie
7 klassen enzymen:
o Oxidoreductasen: katalyseren redox reacties
o Transferasen: functionele groepen verplaatsen
o Hydrolasen: hydrolyse reacties (= H2O verbruikt voor binding te
splitsen)
o Lyasen: dubbele binding vormen + groepen elimineren
o Isomerasen: isomerisatie
o Ligasen: binding maken (energie uit ATP hydrolyse)
o Translocases: ATP gedreven transport doorheen membraan
1.2 SPECIFICITEIT VAN ENZYMEN
1.2.1 SUBSTRAATSPECIFICITEIT
Substraten / reagentia moeten in actief centrum (= AZ die zorgen voor
substraat binding) van enzym geraken te groot = niet passen geen
reactie
2 soorten van binding: sleutel-slot model en induced-fit model
o Sleutel-slot: enzym + substraat passen perfect
o Induced-fit: enzym of substraat ondergaat conf verandering bij
naderen van substraat substraat toch passen
Substraatbinding via H-bruggen, van der waals interacties, elektrostatische
interacties,…
o Binden op groeve op het oppervlak van enzym (= actief centrum) +
vorm van groeve = mooi inpassen (geometrische
complementariteit) en maximale interacties (elektrostatische
complementariteit)
1.2.2 GEOMETRISCHE SPECIFICITEIT
Bv: glucose en mannose 1 OH die axiaal (mannose) of equatoriaal
(glucose) staat glucokinase bijna niet (= +++traag) reageren met
mannose
1.2.3 STEREOSPECIFICITEIT
Bv: L en D AZ bepaalde enzymen (bv: L-Alanine oxidase) herkent alleen
L-alanine, reactie met D gebeurt 1000x trager
1.3 COFACTOREN
2 soorten: metaal ionen en co-enzymen
o Co-enzym = organische stof / mix van organische en anorganische
stoffen + 2 soorten: co-
7
, o substraten en prosthetische groepen (= covalent gebonden, bv:
Heem-groep)
2 soorten enzymen: apo-enzymen (= niet gebonden aan cofactor) en
holo-enzymen (= gebonden aan cofactor)
Bv: NAD+ - NADH (= co-substraat) (geoxideerde vorm – gereduceerde
vorm)
1.4 TRANSITIETOESTAND THEORIE
Theorie: reagentia + reactieproducten = minimale energie + tijdens
reactie ontstaat hoogenergetische transitietoestand (+ hoogte bepaalt
snelheid van reactie)
o Door zeer energetische transitietoestand #molc zeer klein
vormen van transitietoestand = snelheidsbepalend
Bij een 2stap mechanisme: 2 transitietoestanden waartussen een
intermediair aanwezig is
Nut katalysatoren / enzymen verlagen activeringsenergie (= energie
voor transitietoestand te bereiken) meer molc voldoende energie
(kinetische) om energie barrière te overwinnen reactie sneller
1.5 ENZYMATISCHE MECHANISMEN
Enzymen? …
o 1) transitietoestand stabieler maken: functionele groepen van AZ
interactie met substraten bindingen met transitietoestand
(negatieve ladingen neutraliseren,…) stabilisatie
1.5.1 ZUUR BASE KATALYSE
Transitietoestand = veel – ladingen / gepolariseerd molc tussenkomst
van basische +/ zure zijketens neutraliseren + stabiliseren: door H+ over
te brengen (MAAR H+ op einde terug op eiwit netto geen verandering
van enzym)
Algemene zuurkatalyse en algemene basekatalyse: zie org chemie
Mogelijkheid om in zuur-base katalyse op te treden afh. van pK van AZ
o Indien pH = pK zuur geprotonneerd geen base-eigenschappen
o AZ in actief centrum = pH afhankelijk optimum bij 7 (zuur
protonatie, basisch deprotonatie)
Bv RNAseA = breekt RNA af + geproduceerd in pancreas + vertering van
RNA in voedsel
o Eigenschappen: 1) katalytische activiteit afh. pH en 2) RNA
omzetten naar cyclisch intermediair
Werking RNase A
o 1) H+ wegtrekken van 2’OH door histidine (His) (= base)
o 2) 2’O- valt fosfodiëster aan P-O wordt gebroken cyclisch
nucleotide ontstaat + 5’O- ontstaat
o 3) 5’O- neutraliseert door weg trekken van H van His (andere His)
(=zuur)
o 4) H+ wordt van H2O getrokken door His (stap 3)
o 5) OH- valt cyclische nucleotide aan thv P=O breken van binding
in 2
o 6) ontstane 2’O- trekt H+ weg van His (stap 1)
8
, 1.5.2 COVALENTE KATALYSE
Tijdelijk covalente binding tssn sub + enzym via nucleofiele substitutie
(elektron rijke groep van enzym doneert elektronen aan elektron arme
groep van sub)
Bv: vorming van imine
Meestal meerstapsmechanismen intermediair = enzym-substraat
complex
1.5.3 METAALION KATALYSE
Bij redox reacties + metaalion (Fe2+, Fe3+, Cu2+, Mn2+,…) in actief
centrum
Rol metaalion:
o Directe binding aan sub
o Gemakkelijk van oxidatietoestand veranderen handig bij redox
o Stabilisatie van – ladingen (metaalionen efficiënter dan + geladen
zijketens geen pH afh.)
Bv: carbonzuur anhydrase
1.5.4 ANDERE
Elektrostatische katalyse
Proximiteit en oriëntatie-effecten
o Zorgen voor:
Contact brengen van sub
Goeie oriëntatie van sub
Stabiliseren geladen groepen in transitietoestand
Beperken translationele + rotationele bewegingen
o Enzym vervormt sub beter in actief centrum conc van sub in
transitietoestand groter reactie versnellen
Structuur enzym mechanisme gaan afleiden
1.6 ENZYMKINETIEK
1.6.1 CHEMISCHE KINETIEK
Verondersteld al gekend
1.6.2 MICHAELIS-MENTEN KINETIEK
Enzymkinetiek = kwantitatieve benadering hoe snel wordt een sub
omgezet? Hoe efficiënt is een inhibitor? …
Helpt om flux te bepalen (= tempo waarmee sub omgezet wordt door de
traagste stap)
Betrokkenheid van enzymen: conc(E) <<< conc(S) waarbij E + S ES(=
intermediair) E + P
o Al het enzym = ES snelheidsbepalende stap = ES E + P en
snelheid = k2 * conc(ES)
o MAAR conc(ES) meten kan niet 2 veronderstellingen
9
METABOLISME I
SAMENVATTING
Jarne Winderickx
,1. Herhaling en verdieping van aspecten rond enzymatische
mechanismen............................................................................ 7
1.1 Inleiding.....................................................................................7
1.2 Specificiteit van enzymen............................................................7
1.2.1 Substraatspecificiteit..........................................................................................7
1.2.2 Geometrische specificiteit...................................................................................7
1.2.3 Stereospecificiteit...............................................................................................7
1.3 Cofactoren.................................................................................7
1.4 Transitietoestand theorie............................................................8
1.5 Enzymatische mechanismen........................................................8
1.5.1 Zuur base katalyse.............................................................................................. 8
1.5.2 Covalente katalyse..............................................................................................9
1.5.3 Metaalion katalyse..............................................................................................9
1.5.4 Andere................................................................................................................ 9
1.6 Enzymkinetiek............................................................................9
1.6.1 chemische kinetiek.............................................................................................9
1.6.2 Michaelis-Menten kinetiek...................................................................................9
1.7 Bisubstraat reacties..................................................................10
1.7.1 Sequentiële reacties......................................................................................... 10
1.7.2 Pingpong reacties.............................................................................................. 10
1.8 Inhibitie en regulatie.................................................................10
1.8.1 Competitieve inhibitie.......................................................................................11
1.8.2 Niet-competitieve inhibitie................................................................................11
1.8.3 Gemengde inhibitie........................................................................................... 11
1.9 Geneesmiddelen: HIV remmers..................................................11
1.10 Regulatie................................................................................11
1.10.1 Controle op niveau van enzymgehalte............................................................12
1.10.2 Regulatie op conformationele / structurele niveau..........................................12
1.10.2.1 Allosterische regulatie..............................................................................12
1.10.2.2 Covalente modificaties.............................................................................12
1.10.2.3 Overgang van T naar R toestand: allosterische en covalente regulaties...12
2.Hormonen en signaaltransductie...........................................12
2.1 Signaalmoleculen......................................................................13
2.2 Hormoonsignalisatie.................................................................13
2.2.1 Functies............................................................................................................. 13
2.3 Hormoon-klassen......................................................................13
2.3.1 Pancreatische hormonen...................................................................................13
2.3.2 Cathecholamines: Epinefrine en norepinefrine (adrenaline en nonadrenaline...14
2.3.3 Steroïde hormonen........................................................................................... 14
2.3.4 Groeihormonen (GH)......................................................................................... 14
2.4 Binding van hormonen aan receptoren geeft aanleiding tot
signaalcascaden.............................................................................14
2.4.1 Receptor tyrosine kinasen.................................................................................14
2.4.1.1 Proteïne fosfatasen.....................................................................................14
2.4.3 G-proteïne gekoppelde receptoren / GPCR........................................................15
1
, 2.5 Adenylaat cyclase pathway........................................................15
2.5.1 cAMP................................................................................................................. 15
2.5.2 PKA / proteïne kinase A.....................................................................................15
2.5.3 Remming van adenylaat cyclase.......................................................................16
2.6 Fosfoïnositide pathway.............................................................16
2.6.1 Calmoduline...................................................................................................... 16
3. Inleiding van het metabolisme..............................................16
3.1 Cellulaire energiewinning..........................................................16
3.2 Metabole pathways...................................................................17
3.2.1 NADH vs NADPH................................................................................................ 17
3.2.2 Rol van enzymen............................................................................................... 17
3.2.3 Cellulaire locatie............................................................................................... 17
3.2.4 Lactaat dehydrogenase.....................................................................................18
3.2.5 Algemene kenmerken.......................................................................................18
3.3 Thermodynamische aspecten.....................................................18
3.3.1 Regulatie: 3 vormen.......................................................................................... 18
3.4 Hoogenergetische verbindingen................................................18
3.4.1 ATP / adenosine trifosfaat.................................................................................19
3.4.2 Andere verbindingen......................................................................................... 19
3.5 Redoxreacties...........................................................................20
3.5.1 Thermodynamische aspecten...........................................................................20
3.6 Experimentele benaderingen om metabolisme te bestuderen......20
4. Suikermetabolisme: glucose katabolisme..............................21
4.1 De eerste 5 reactiestappen: vorming 2 molc GAP........................21
4.1.1 Reactie 1: hexokinase (HK)...............................................................................21
4.1.2 Reactie 2: Fosfogluco isomerase (PGI)..............................................................22
4.1.2.1 Mechanisme............................................................................................... 22
4.1.2.2 enzymenspecificiteit van PGI......................................................................22
4.1.3 Reactie 3: Fosfofructokinase (PFK)....................................................................22
4.1.4 Reactie 4: Splitsingsreactie / Aldolase...............................................................23
4.1.4.1 mechanisme voor klasse I..........................................................................23
4.1.4.2 Klasse II...................................................................................................... 24
4.1.5 Reactie 5: Triosefosfaat isomerase (TIM) / tussenreactie...................................24
4.1.5.1 mechanisme............................................................................................... 24
4.1.6 Recap................................................................................................................ 24
4.2 De volgende 5 reactiestappen (alles wat volgt x2: 2 molc GAP). . .24
4.2.1 Reactie 6: Glyceraldehyde-3-fosfaat dehydrogenase........................................24
4.2.1.1 Experimenten............................................................................................. 24
4.2.1.2 Mechanisme............................................................................................... 25
4.2.2 Reactie 7: fosfoglyceraat kinase (PGK)..............................................................25
4.2.3 Reactie 8: fosfoglyceraat mutase (PGM)...........................................................26
4.2.3.1 Mechanisme............................................................................................... 26
4.2.3.2 Rode bloedcellen (RBC)..............................................................................26
4.2.4 Reactie 9: enolase............................................................................................. 27
4.2.5 Reactie 10: pyruvaat kinase (PK)......................................................................27
4.3 Glycolyse: besluiten..................................................................27
4.4 Vervolgstappen: regeneratie NAD+............................................27
4.4.1 Homolactische fermentatie...............................................................................27
2
, 4.4.2 Alcohol fermentatie........................................................................................... 28
4.4.2.1 Pyruvaat decarboxylase (PDC)....................................................................28
4.4.2.2 Alcohol dehydrogenase (ADH)....................................................................28
4.4.3 Pasteur effect.................................................................................................... 29
4.5 Aerobe processen: skip.............................................................29
4.6 Wit vs rood vlees: lees dia 76 -77...............................................29
4.7 Controle van glycolyse..............................................................29
4.7.1 Fosfofructokinase (PFK) + regulatie door ATP...................................................29
4.7.1.2 Rol van AMP................................................................................................ 30
4.7.1.2 Substraat cycling........................................................................................30
4.7.2 Glucosetransport............................................................................................... 31
4.7.3 Rol van hexokinase........................................................................................... 31
4.7.4 glycolyse en kanker: bekijk dia 34-36...............................................................31
4.8 Metabolisme van andere hexosesuikers.....................................31
4.8.1 Fructose............................................................................................................ 31
4.8.1.1 Fructose pathway in lever...........................................................................31
4.8.1.2 Regulatie + deficiënties..............................................................................32
4.8.2 Galactose.......................................................................................................... 32
4.8.2.1 Mechanisme............................................................................................... 32
4.8.2.2 Regulatie + deficiënties..............................................................................33
4.8.3 Mannose........................................................................................................... 33
4.9 Pentosefosfaat pathway / Shunt (belangrijk)..............................33
4.9.1 Pathway in 3 stappen........................................................................................33
4.9.1.1 Eerste stap: oxidatieve reacties leveren NADPH en ribulose-5-P................33
4.9.1.2 Tweede stap: Isomerisatie + epimerisatie van ribulose-5-P........................34
4.9.1.3 Derde stap: C-C splitsingen + herschikkingen die C5 suikers omzetten in C6
en C3 suikers.......................................................................................................... 34
4.9.2 Regulatie........................................................................................................... 34
4.9.3 Deficiëntie van G6P dehydrogenase.................................................................35
5. Glycogeenmetabolisme + Gluconeogenese............................35
5.1 Inleiding...................................................................................35
5.2 Glycogeen: chemie....................................................................36
5.3 Glycogeen: afbraak...................................................................36
5.3.1 Glycogeen fosforylase.......................................................................................36
5.3.1.1 Glycogeen-bindingsplaats...........................................................................37
5.3.1.2 Cofactor: pyridoxaal-5-P / PLP.....................................................................37
5.3.1.3 Mechanisme van enzym.............................................................................38
5.3.1.4 Allosterische en covalente regulatie...........................................................38
5.3.2 Glycogeen debranching enzym.........................................................................39
5.3.3 Fosfoglucomutase............................................................................................. 39
5.4 Glycogeen: synthese.................................................................39
5.4.1 UDP-glucose pyrofosforylase.............................................................................39
5.4.2 Glycogeen synthase.......................................................................................... 39
5.4.2.1 Regulatie.................................................................................................... 39
5.4.2.2 Keteninitiatie via glycogenine.....................................................................40
5.4.3 Branching enzym.............................................................................................. 40
5.5 Defecten in het glycogeenmetabolisme: stapelingsziekten..........40
5.6 Controle van het glycogeenmetabolisme....................................40
3
, 5.6.1 Allosterische controle........................................................................................40
5.6.2 Covalente controle: fosforylatie........................................................................41
5.6.3 Hoe wordt fosforylase geactiveerd....................................................................41
5.6.3.1 Proteïne kinase A (PKA)..............................................................................41
5.6.3.2 Fosforylase kinase (Phk).............................................................................41
5.6.3.3 Fosfoproteïne fosfatase I (PP1)...................................................................42
Regulatie in spieren............................................................................................ 42
Regulatie in lever................................................................................................ 43
5.6.3.4 Regulatie glycogeen synthase....................................................................43
5.6.4 Hormonale controle........................................................................................... 43
5.6.4.1 Lever.......................................................................................................... 44
5.6.4.2 Spier........................................................................................................... 45
5.6.5 Diabetes............................................................................................................ 45
5.7 Gluconeogenese.......................................................................45
5.7.1 Pathway............................................................................................................ 46
5.7.1.1 Reactie 1: omzetting van pyruvaat tot fosfoenolpyruvaat (PEP).................46
5.7.1.2 Andere bypassreacties................................................................................47
5.7.1.3 Alle andere reacties....................................................................................48
5.7.1.4 Algemeen................................................................................................... 48
5.7.2 Cellulaire lokalisatie.......................................................................................... 48
5.7.3 Regulatie ban gluconeogenese.........................................................................49
5.7.3.1 F26BP......................................................................................................... 49
5.7.3.2 Andere allosterische effectoren..................................................................50
5.7.3.3 Genetische controle....................................................................................50
6. Citroenzuurcyclus................................................................50
6.1 Inleiding...................................................................................50
6.2 Overzicht citroenzuurcyclus / CTZ..............................................50
6.3 Kenmerken...............................................................................50
6.4 Vooraf: synthese acetyl-coenzyme A / acetyl-CoA........................51
6.4.1 Multi-enzym complex: Pyruvaatdehydrogenase-complex..................................51
6.4.1.1 Pyruvaatdehydrogenase / E1......................................................................51
6.4.1.2 Dihydrolipoyltransacetylase / E2.................................................................52
6.4.1.3 E2 katalyseert een transesterificatie reactie...............................................52
6.4.1.4 Regeneratie E2 door dihydrolipoyldehydrogenase / E3...............................52
6.4.1.5 Regeneratie E3 + eiwitstructuur E3............................................................53
6.4.2 Hoe reactie-intermediairen van E2 naar E1 en E3 doorgeven...........................53
6.5 Redoxreacties in CTZ................................................................53
6.5.1 Reductiepotentiaal van FAD..............................................................................54
6.6 Enzymen van CTZ......................................................................54
6.6.1 enzym 1: Citraatsynthase.................................................................................54
6.6.1.1 Reactiemechanisme...................................................................................54
6.6.2 Enzym 2: Aconitase........................................................................................... 55
6.6.2.1 Mechanisme............................................................................................... 55
6.6.3 enzym 3: Isocitraatdehydrogenase...................................................................55
6.6.4 enzym 4: -ketoglutaraat dehydrogenase (multi-enzymcomplex)......................55
6.6.5 enzym 5: Succinyl-CoA synthetase...................................................................56
6.6.6 enzym 6: Succinaatdehydrogenase...................................................................57
6.6.7 enzym 7: Fumarase / fumaraathydratase..........................................................57
6.6.8 Malaatdehydrogenase.......................................................................................57
6.7 Energie balans..........................................................................57
4
, 6.8 Regulatie van de CTZ................................................................57
6.8.1 Regulatie van pyruvaatdehydrogenase.............................................................58
6.8.1.1 Productinhibitie door acetyl-CoA + NADH...................................................58
6.8.1.2 Covalente modificatie van E1.....................................................................58
6.8.1.2 Andere regulatoren.....................................................................................58
6.8.2 Hartspieren....................................................................................................... 58
6.8.3 Snelheidsbepalende enzymen van de CTZ........................................................59
6.8.3.1 Additionele regulatorische mechanismen...................................................59
6.9 Reacties gerelateerd aan CTZ....................................................59
6.9.1 Kataplerotische reacties....................................................................................60
6.9.2 Anaplerotische reacties.....................................................................................60
6.9.3 Vetten omzetten tot suikers?............................................................................61
6.10 Glyoxylaatcyclus.....................................................................61
7. Mitochondriale ATP synthese................................................62
7.1 Elektronentransfer en oxidatieve fosforylatie.............................62
7.2 Mitochondriën en transporters..................................................62
7.2.1 Transportsystemen............................................................................................ 62
7.3 Elektronentransport..................................................................63
7.3.1 Thermodynamica.............................................................................................. 63
7.3.2 Elektronentransportketen / ETC.........................................................................63
7.3.3 Complex I: NADH-coenzyme Q oxidoreductase)................................................64
7.3.3.1 Cofactoren van complex I...........................................................................64
7.3.3.2 Mechanisme van H+ translocatie van complex I........................................65
7.3.4 Complex II: succinaat-coenzyme Q oxidoreductase..........................................66
7.3.5 Complex III: coenzyme-Q-cytochroom c oxidoreductase...................................67
7.3.5.1 Q-cyclus: e-transport en H+ translocatie van complex III...........................67
7.3.5.2 Cytochroom c............................................................................................. 68
7.3.6 Complex IV: cytochroom c oxidase....................................................................69
7.3.7 Oxidatieve fosforylatie......................................................................................71
7.3.7.1 ATP synthase / complex V / F1F0-ATPase....................................................72
Translocatie H+ doorheen F0 subeenheid...........................................................73
ATP synthese: 3 katalytische promotors (3 paren)..............................................73
Koppeling beide stappen.....................................................................................74
7.3.7.2 P/O verhouding: hoeveel ATP vormen per 2 elektronen afkomstig van NADH
............................................................................................................................... 74
7.4 Controle op oxidatieve fosforylatie............................................74
7.5 Controle op oxidatief metabolisme.............................................75
8. Fotosynthese.......................................................................76
8.1 Chloroplasten...........................................................................76
8.2 Stap 1: Captatie van licht..........................................................76
8.3 Stap 2: Lichtreacties.................................................................77
8.3.1 Gebruik van licht............................................................................................... 77
8.3.1.1 Fotosynthese planten en cyanobacteriën: Z-schema..................................78
8.4 Donkerreacties / calvin cyclus (niet cyclus vanbuiten kennen).....81
5
,6
,1. HERHALING EN VERDIEPING VAN ASPECTEN ROND ENZYMATISCHE
MECHANISMEN
1.1 INLEIDING
Enzymen = katalytische eiwitten + onderscheiding chemische
katalysatoren: 1) hogere reactiesnelheden 2) mildere
reactieomstandigheden (fysiologisch milieu) 3) hoge specificiteit 4)
regulatie
7 klassen enzymen:
o Oxidoreductasen: katalyseren redox reacties
o Transferasen: functionele groepen verplaatsen
o Hydrolasen: hydrolyse reacties (= H2O verbruikt voor binding te
splitsen)
o Lyasen: dubbele binding vormen + groepen elimineren
o Isomerasen: isomerisatie
o Ligasen: binding maken (energie uit ATP hydrolyse)
o Translocases: ATP gedreven transport doorheen membraan
1.2 SPECIFICITEIT VAN ENZYMEN
1.2.1 SUBSTRAATSPECIFICITEIT
Substraten / reagentia moeten in actief centrum (= AZ die zorgen voor
substraat binding) van enzym geraken te groot = niet passen geen
reactie
2 soorten van binding: sleutel-slot model en induced-fit model
o Sleutel-slot: enzym + substraat passen perfect
o Induced-fit: enzym of substraat ondergaat conf verandering bij
naderen van substraat substraat toch passen
Substraatbinding via H-bruggen, van der waals interacties, elektrostatische
interacties,…
o Binden op groeve op het oppervlak van enzym (= actief centrum) +
vorm van groeve = mooi inpassen (geometrische
complementariteit) en maximale interacties (elektrostatische
complementariteit)
1.2.2 GEOMETRISCHE SPECIFICITEIT
Bv: glucose en mannose 1 OH die axiaal (mannose) of equatoriaal
(glucose) staat glucokinase bijna niet (= +++traag) reageren met
mannose
1.2.3 STEREOSPECIFICITEIT
Bv: L en D AZ bepaalde enzymen (bv: L-Alanine oxidase) herkent alleen
L-alanine, reactie met D gebeurt 1000x trager
1.3 COFACTOREN
2 soorten: metaal ionen en co-enzymen
o Co-enzym = organische stof / mix van organische en anorganische
stoffen + 2 soorten: co-
7
, o substraten en prosthetische groepen (= covalent gebonden, bv:
Heem-groep)
2 soorten enzymen: apo-enzymen (= niet gebonden aan cofactor) en
holo-enzymen (= gebonden aan cofactor)
Bv: NAD+ - NADH (= co-substraat) (geoxideerde vorm – gereduceerde
vorm)
1.4 TRANSITIETOESTAND THEORIE
Theorie: reagentia + reactieproducten = minimale energie + tijdens
reactie ontstaat hoogenergetische transitietoestand (+ hoogte bepaalt
snelheid van reactie)
o Door zeer energetische transitietoestand #molc zeer klein
vormen van transitietoestand = snelheidsbepalend
Bij een 2stap mechanisme: 2 transitietoestanden waartussen een
intermediair aanwezig is
Nut katalysatoren / enzymen verlagen activeringsenergie (= energie
voor transitietoestand te bereiken) meer molc voldoende energie
(kinetische) om energie barrière te overwinnen reactie sneller
1.5 ENZYMATISCHE MECHANISMEN
Enzymen? …
o 1) transitietoestand stabieler maken: functionele groepen van AZ
interactie met substraten bindingen met transitietoestand
(negatieve ladingen neutraliseren,…) stabilisatie
1.5.1 ZUUR BASE KATALYSE
Transitietoestand = veel – ladingen / gepolariseerd molc tussenkomst
van basische +/ zure zijketens neutraliseren + stabiliseren: door H+ over
te brengen (MAAR H+ op einde terug op eiwit netto geen verandering
van enzym)
Algemene zuurkatalyse en algemene basekatalyse: zie org chemie
Mogelijkheid om in zuur-base katalyse op te treden afh. van pK van AZ
o Indien pH = pK zuur geprotonneerd geen base-eigenschappen
o AZ in actief centrum = pH afhankelijk optimum bij 7 (zuur
protonatie, basisch deprotonatie)
Bv RNAseA = breekt RNA af + geproduceerd in pancreas + vertering van
RNA in voedsel
o Eigenschappen: 1) katalytische activiteit afh. pH en 2) RNA
omzetten naar cyclisch intermediair
Werking RNase A
o 1) H+ wegtrekken van 2’OH door histidine (His) (= base)
o 2) 2’O- valt fosfodiëster aan P-O wordt gebroken cyclisch
nucleotide ontstaat + 5’O- ontstaat
o 3) 5’O- neutraliseert door weg trekken van H van His (andere His)
(=zuur)
o 4) H+ wordt van H2O getrokken door His (stap 3)
o 5) OH- valt cyclische nucleotide aan thv P=O breken van binding
in 2
o 6) ontstane 2’O- trekt H+ weg van His (stap 1)
8
, 1.5.2 COVALENTE KATALYSE
Tijdelijk covalente binding tssn sub + enzym via nucleofiele substitutie
(elektron rijke groep van enzym doneert elektronen aan elektron arme
groep van sub)
Bv: vorming van imine
Meestal meerstapsmechanismen intermediair = enzym-substraat
complex
1.5.3 METAALION KATALYSE
Bij redox reacties + metaalion (Fe2+, Fe3+, Cu2+, Mn2+,…) in actief
centrum
Rol metaalion:
o Directe binding aan sub
o Gemakkelijk van oxidatietoestand veranderen handig bij redox
o Stabilisatie van – ladingen (metaalionen efficiënter dan + geladen
zijketens geen pH afh.)
Bv: carbonzuur anhydrase
1.5.4 ANDERE
Elektrostatische katalyse
Proximiteit en oriëntatie-effecten
o Zorgen voor:
Contact brengen van sub
Goeie oriëntatie van sub
Stabiliseren geladen groepen in transitietoestand
Beperken translationele + rotationele bewegingen
o Enzym vervormt sub beter in actief centrum conc van sub in
transitietoestand groter reactie versnellen
Structuur enzym mechanisme gaan afleiden
1.6 ENZYMKINETIEK
1.6.1 CHEMISCHE KINETIEK
Verondersteld al gekend
1.6.2 MICHAELIS-MENTEN KINETIEK
Enzymkinetiek = kwantitatieve benadering hoe snel wordt een sub
omgezet? Hoe efficiënt is een inhibitor? …
Helpt om flux te bepalen (= tempo waarmee sub omgezet wordt door de
traagste stap)
Betrokkenheid van enzymen: conc(E) <<< conc(S) waarbij E + S ES(=
intermediair) E + P
o Al het enzym = ES snelheidsbepalende stap = ES E + P en
snelheid = k2 * conc(ES)
o MAAR conc(ES) meten kan niet 2 veronderstellingen
9