Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Notes de cours

Complete WEEK7 note: Machine Learning & Learning Algorithms(BM05BAM)

Note
-
Vendu
-
Pages
7
Publié le
12-03-2024
Écrit en
2023/2024

THIS IS A COMPLETE NOTE FROM ALL BOOKS + LECTURE! Save your time for internships, other courses by studying over this note! Are you a 1st/2nd year of Business Analytics Management student at RSM, who want to survive the block 2 Machine Learning module? Are you overwhelmed with 30 pages of reading every week with brand-new terms and formulas? If you are lost in where to start or if you are struggling to keep up due to the other courses, or if you are just willing to learn about Machine Learning, I got you covered. I successfully passed the course Machine Learning & Learning Algorithms at RSM with 7.6, WITHOUT A TECHNICAL BACKGROUND before this Master. So if you are from Non-tech bachelor program, this note will navigate the knowledge you should focus on to pass the exam and successfully complete assignments, and for people with some machine learning knowledge, this note will certainly make your life easier and gets you a booster to your grade.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
12 mars 2024
Nombre de pages
7
Écrit en
2023/2024
Type
Notes de cours
Professeur(s)
Jason roos
Contient
Toutes les classes

Sujets

Aperçu du contenu

12.4: Clustering Methods
Clustering: a technique to find clusters in a data set from the observations of a data set by
partitioning them into different groups so that the observations within each subgroups are quite
homogeneous to each other, while observations in different clusters are quite different form
each other.

Clustering is a unsupervised problem that attempt to discover structure on the basis of a
dataset, without labels to use for training.

Hard clustering without a statistical model is the primary way discussed here.

Clustering has two best known approaches
1. K-means Clustering : seeking to partition the observations into a pre-specified number
of clusters
a. Example: Where customers spend time
2. Hierarchical Clustering : we do not know I advance how many clusters we want, and it
builds a tree-like visual representations: dendrogram
a. Example: product categorization

Choice depends on whether you think clusters are disjoint or have a hierarchical arrangement

12.4.1: K-Means Clustering
K-means Clustering: partitions observations into K distinct, non-overlapping clusters.

K-means Clustering’s clusters C1,..Ck must satisfy two conditions
1. Each observations belongs to at least one of K clusters
2. The clusters are non over-lapping: no observations belong to more than one cluster

Good clustering for K-means clustering: the sum of within-cluster-variations for cluster Ck is as
small as possible.
- Goal: minimizing the sum of the measure of within-cluster-variations: W(Ck) +
maximizing the sum of measure of inte-cluster-variations
- The unit of within-cluster variation: weighted sum of Euclidean distance of every
observations for every cluster
o Divided by the total number of observations in the Kth cluster




Input distance matrix

, Process: to find a local optimum out of the K^n ways of minimizing
1. Specify the desired number of clusters K
2. Randomly assign a number from 1 to K to each of the observations as an initial cluster
assignments
3. Iterate until the cluster assignments stop changing
a. For each of the K clusters, compute the cluster centroid as the mean of the
observations assigned to each cluster.
i. Kth cluster centroid: a vector of the p feature means for the observations
in the kth cluster
b. Assign each observations to the cluster whose centroid is closet in the mean of
Euclidean distance.
4. Run the algorithm multiple times from different random cluster assignments and select
the best solution as the local optimum
a. The performance of the result obtained will depend on the initial random cluster
assignment.
€11,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ArisMaya Erasmus Universiteit Rotterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
49
Membre depuis
4 année
Nombre de followers
30
Documents
20
Dernière vente
3 mois de cela
Let's Pass Together!

4,0

1 revues

5
0
4
1
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions