Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Notes de cours

Complete WEEK5 note: Machine Learning & Learning Algorithms(BM05BAM)

Note
-
Vendu
-
Pages
6
Publié le
12-03-2024
Écrit en
2023/2024

THIS IS A COMPLETE NOTE FROM ALL BOOKS + LECTURE! Save your time for internships, other courses by studying over this note! Are you a 1st/2nd year of Business Analytics Management student at RSM, who want to survive the block 2 Machine Learning module? Are you overwhelmed with 30 pages of reading every week with brand-new terms and formulas? If you are lost in where to start or if you are struggling to keep up due to the other courses, or if you are just willing to learn about Machine Learning, I got you covered. I successfully passed the course Machine Learning & Learning Algorithms at RSM with 7.6, WITHOUT A TECHNICAL BACKGROUND before this Master. So if you are from Non-tech bachelor program, this note will navigate the knowledge you should focus on to pass the exam and successfully complete assignments, and for people with some machine learning knowledge, this note will certainly make your life easier and gets you a booster to your grade.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
12 mars 2024
Nombre de pages
6
Écrit en
2023/2024
Type
Notes de cours
Professeur(s)
Jason roos
Contient
Toutes les classes

Sujets

Aperçu du contenu

5.2 The Bootstrap
Bootstrap: a method obtain a new sample set without obtaining independent
data sets from the population by repeatedly sampling observations form the
original data set.

It can be applied to a wide range of statistical learning methods, including ones
which a measure of variability is otherwise difficult to obtain and not
automatically output by statistical software.

Estimates of values (e.g. accuracy) of bootstrapped data can perform great, even
comparable to the estimate based o a simulated datasets from the true
population .

Purpose
Bootstrap can be used to estimate and quantify the uncertain value associated
with a given estimator/statistical learning method

Process
1. Assume our sample is representative of the population of interest
2. Bootstrap randomly select n observations from a dataset to produce a
bootstrap data det, Z*1.

The sampling Is performed with replacement: same observation can occur more
than once in the bootstrap data set.




We can use Z*1 to produce a new bootstrap estimate for an estimate of the dataset (e.g.
accuracy as alpha*1).

, 8.2 Bagging, Random Forests, Boosting
Ensemble method/ weak learners: approach that combines many simple “building block”
models to obtain a single powerful model in prediction performance.

Decision tree have low bias but high variance. Averaging many trees improve variance.
(low bias because it has the information of the interactive features)

Ensemble methods that use regression/classification tree as building blocks
1) Bagging
2) Random forests
3) Boosting

8.2.1 Bagging
Bagging : General purpose procedure for reducing he variance of a statistical learning method. –
- Bagging uses bootstrapping: it takes repeated samples from the single training data set,
build a separate prediction model using each training set, and average the resulting
prediction that leads to low variance.

Bagged trees are grown deep + unpruned.

Bagging is particularly useful for many regression methods, particularly decision trees.

Advantage
1. Low bias
a. Trees are grow deep, and not pruned: thanks to the low variance by averaging,
each tree can be fit to each bootstrapped data
2. Low variance
a. Averaging the trees (could be hundreds/thousands trees!) built on bootstrapped
train data reduces the variance: as it does not rely on any single tree
Disadvantage
1. Can be difficult to interpret the resulting model
2. Could result in highly correlated trees when variance importance’s strongly vary among
the predictors, leading to not effective variance reduction (refer to Random Forest)

Process
1. Create B bootstrapped training data sets
2. Construct B regression trees using the bth bootstrapped training set to get the estimates
of y
3. For regression trees: Average them to obtain a single low-variance statistical learning
model, given by
€11,49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ArisMaya Erasmus Universiteit Rotterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
49
Membre depuis
4 année
Nombre de followers
30
Documents
20
Dernière vente
3 mois de cela
Let's Pass Together!

4,0

1 revues

5
0
4
1
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions