Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

Integrales Triples - Ejercicios Resueltos de Cálculo 2 de Larson

Note
-
Vendu
-
Pages
5
Publié le
11-02-2024
Écrit en
2023/2024

Estos son ejercicios resueltos de integrales triples del libro "Cálculo 2" de Larson. Las resoluciones son sistemáticas y se incluyen gráficas 3D hechas en Mathematica. Se incluye un problema del libro "Cálculo de varias variables" de Stewart.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
11 février 2024
Nombre de pages
5
Écrit en
2023/2024
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

Cálculo II - Integrales triples, ejercicios muestra
Del libro: Ron Larson, Bruce H. Edwards. Cálculo 2 de varias variables. 9ª edición. McGraw-Hill, 2010
Sección 14.6
Dar una integral triple para el volumen del sólido.
17. El sólido que está en el interior común bajo la esfera x 2
+ y 2
+ z 2
= 80 y sobre el paraboloide
z x y .
=
1

2
2
+
2




Se emplea el orden dzdydx. Se tiene que para cada variable los intervalos son:
1

2
x 2
+ y 2
⩽ z ⩽ 80 -y -x
2 2
- z- x 2
2
⩽ y⩽ 2 z- x 2
- 4 ⩽ x ⩽ 4



La intersección entre las superficies es la circunferencia x 2
+ y 2
= 16 , por lo que el intervalo de y puede
cambiarse a
- 16 -x 2
⩽ y⩽ 16 -x 2
,

esto con el propósito de no introducir nuevamente la variable z, que ya habrá sido integrada.
Así la integral que describe el volumen del sólido es
-x -x -y
z
4 2 2 2
16 80
V ∫ ∫ d dydx
=
- -
4 16 -x ∫2 1

2
x 2
+y 2




Usar una integral triple para encontrar el volumen del sólido limitado por las gráficas de las
ecuaciones.
25. z - y z - y x
= 2 , = 4 x y 2
, = 0, = 3, = 0

, Con la figura se pueden deducir los límites de integración en el orden dzdxdy:
2 -y z ⩽ ⩽ 4 -y 2
0 ⩽ x ⩽ 3 0 ⩽ y⩽ 2

El intervalo de y fue hallado con las intersecciones de la superficie cilíndrica con el plano z = 2 - y:
-y -y 2
y 2
-y y 2
-y- y - y + 1) =
-
2 = 4 ⟹ = 2 ⟹ 2 = ( 2)( 0

y 1 = 2 y 2 = 1


Estableciendo y resolviendo la integral:
-y
-y dzdxdy -y - -y -y
2
2 3 4 2 3 2

V = ∫ ∫ ∫
2
= ∫ ∫ 4
2
+ y 2 dxdy = ∫ 2
2
( 3) dy
0 0 0 0 0




V = 3 2 y - 1
y 3
+
1
y 2
2

= 3 4 - 8
+2 = 3 6 - 8
= 3
18 - 8

3 2 0 3 3 3


V = 10 u 3




Sección 14.7
Dibujar la región sólida cuyo volumen está dado por la integral iterada, y evaluar la integral
iterada.
-r
1 z
2
2𝜋 5
5
0. ∫ ∫ ∫ rd drd𝜃
0 0 0




Se tiene que 0 ⩽ z ⩽ 5 -r 2
0 ⩽ r ⩽ 5 0 ⩽ 𝜃 ⩽ 2𝜋



De la desigualdad con z: z = 0, z = 5 -r 2
= 5 - x 2
+ y 2
son las superficies que limitan a z.
Cuando z : = 0


0 = 5 - x 2
+ y 2
⟹ x 2
+ y 2
= 5 Circunferencia de radio 5 sobre el plano XY

Esto coincide con el intervalo de r. Graficando:
€4,41
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
andreschc_

Faites connaissance avec le vendeur

Seller avatar
andreschc_ UAN
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
1 année
Nombre de followers
0
Documents
1
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions