Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary Statistics and Methodology (AB_1201)

Note
-
Vendu
2
Pages
47
Publié le
28-01-2024
Écrit en
2021/2022

Complete summary of the course Statistics and Methodology (AB_1201) from the 2nd year of biomedical sciences, VU Amsterdam. This summary contains all information needed for the exam, and includes all the material from the lectures and the book that was required for this course. This summary was made during my second year of biomedical sciences (2021/2022). --- Volledige samenvatting van het vak Statistics and Methodology (AB_1201) uit het 2e jaar van biomedische wetenschappen, VU Amsterdam. Deze samenvatting bevat alle informatie die nodig is voor het tentamen, en bevat alle stof uit de hoorcolleges en het boek dat nodig was voor dit vak. Deze samenvatting is gemaakt tijdens mijn tweede jaar biomedische wetenschappen (2021/2022).

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Oui
Publié le
28 janvier 2024
Nombre de pages
47
Écrit en
2021/2022
Type
Resume

Sujets

Aperçu du contenu

Statistics and Methodology
summary




1

, Recap of RBMS 3
Regression I 8
ANOVA I 14
ANOVA II 21
Regression II 25
Scienti c integrity 30
Power 35
Systematic review 40
Critical perspectives on statistics and scienti c literature 45




2


fi fi

, Recap of RBMS
THE PROCESS OF NULL HYPOTHESIS TESTING
1. Research question (based on population)
2. Hypotheses (based on population)
3. Study design and data collection
- Data is collected in a sub-sample of the population of interest
4. Descriptive statistics
- Is limited to sample
5. Inferential statistics: make inferences from the sample to the population of interest
- Based on the hypothesis, how likely is it that what was observed in the sample also holds
for the population?
6. Conclusion
7. Look back at RQ and possibly start whole process again
- Test null hypothesis (instead of Ha), because you cannot prove a negative, but you can prove a
positive by rejecting a negative
- Hypothesis testing does not reveal reality: it gives an estimate how likely it is to observe
what we observe given the null hypothesis
- Because observations/data come with a level of uncertainty, you can never accept H0 as
true/false: rather ‘retain/reject H0’
- In science, you can never prove things: only nd support for/against a certain hypothesis

RESEARCH QUESTION
- A well-formulated research question describes:
- Population
- Intervention
- Comparison
- Outcome (dependent) variables
- Study design
- Should not be too general

HYPOTHESES
- In general, two-sided hypotheses are used:
- Null hypothesis (H0): ‘no e ect’
- …=…
- Alternative hypothesis (H1 or Ha): ‘an e ect’ (can go in either direction)
- …≠…
- Direction of e ect is not speci ed in the hypotheses
- If two-sided hypotheses are (biologically) implausible, one-sided hypotheses are used:
- Null hypothesis (H0): ‘smaller than’ or ‘larger than’
- … < … or … > …
- Alternative hypothesis (H1 or Ha): ‘larger than or equal to’ or ‘smaller than or equal to’
- … > … or … < …
- Direction of e ect is speci ed in the hypotheses

RESEARCH DESIGN
- RQ: causal e ect or association?
- Dependent variable(s)
- Measurement
- Type (nominal, ordinal, discrete, continuous)
- How many?
- Independent variable(s)
- Measurement
- Type (nominal, ordinal, discrete, continuous)
- How many?
3


ffff fiff fi ff fi

, - Manipulation
- Compare groups or conditions? How many?
- Are measurements/manipulations: dependent/within-subjects/paired or independent/
between-subjects/unpaired?
- Types of research designs in biomedical research:
- Observational: involves observations without manipulation and without randomization
(observe as is), and does not allow conclusions on causal e ects (only on associations)
- Cross-sectional: all measurements happened at the same time
- Case control: measure outcome and look back in time to nd possible predictors
- Prospective: follow sample over time for a certain period
- Experimental: includes some sort of manipulation and randomization, and allows
conclusions on causal e ects
- Randomized control trial: participants are randomly assigned to one of more
groups, and a participant only takes part in only 1 condition (intervention or control)
- Cross-over design: participants are randomly assigned to an order of 2 or more
groups, and a participant takes part in all conditions
- Order in which a participant takes part in a certain group is randomly assigned

DESCRIPTIVE STATISTICS
- Goal: to present, organize and summarize data observed in the sample
- Measures of central tendency: mean, median, mode
- Measures of dispersion/variability: (interquartile) range, variance, standard deviation
- Graphs and gures

INFERENTIAL STATISTICS
- Goal: to draw conclusions about a population based on data observed in a sample, by using
statistical tests
- Statistical test: a procedure to decide whether a hypothesis about the population may or
may not be supported by the results of the sample
- How likely are we to observe the data we observed in our sample, if our null hypothesis is
true?
- Pr(data|H0)?
- = very unlikely -> reject H0
- = likely -> retain H0
- Statistical test results in a p-value: probability of the data given that the null hypothesis is true
- Very unlikely: reject the null hypothesis, accept the alternative/experimental hypothesis
- Likelihood is de ned by a threshold of α=0.05 (5%): a p-value <0.05 is regarded as
‘unlikely enough’ to reject the null hypothesis
- Test statistic = (point estimate - expected value) / SE
- Test statistic (e.g. Z, Chi2, t): deviation of the data from the data under null hypothesis
- Point estimate (e.g. mean or proportion): observed point estimate of the sample
- Expected value: expected value under the null hypothesis
- SE (standard error): precision of the point estimate
- One-sample t-test:
- Null hypothesis: μ0 = speci c value
- t = (x - μ0) / se
- Se = sd / √n
- x: mean of sample
- μ0 = value under the null hypothesis
- E.g.: Do students have a healthy blood pressure?
- Independent samples t-test (aka 2-sample t-test):
- Null hypothesis: means from 2 groups are equal: μ1 = μ2
- t = (x1 - x2) - (μ1 - μ2) / sepooled
- sepooled = √((sd12 / n1) + (sd22 / n2))
- x1: mean of group 1
- x2: mean of group 2
- μ1 - μ2 = 0 under the null hypothesis
4



fi fi ff fi fiff
€9,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
SummaryLin Universiteit van Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
76
Membre depuis
2 année
Nombre de followers
34
Documents
25
Dernière vente
3 semaines de cela

4,0

7 revues

5
3
4
1
3
3
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions