Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Summary GZW3024 SPSS en Gpower practicals

Vendu
8
Pages
9
Publié le
28-03-2018
Écrit en
2017/2018

Een uitwerking van alle informatie die bij de SPSS en Gpower practicals is gegeven. Het geeft een overzicht van wat je in welke situatie met SPSS/Gpower moet doen om de gewenste uitkomst te krijgen. Daarnaast staat er ook informatie in die je bij de cases van GZW3024 kan gebruiken.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
28 mars 2018
Nombre de pages
9
Écrit en
2017/2018
Type
Resume

Sujets

Aperçu du contenu

GWZ3024: SPSS practicals
SPSS practical 1
Create interactions terms: transform  compute variable.
- Interactieterm tussen gender en smoke = gender*smoke.

Perform a regression analysis according to the top-down procedure:
- You start with a model containing all relevant independent/predictor variables,
including the interactions: analyse  regression  linear.
o Put the Y variable below ‘dependent’ and the X-variables below
‘independent(s)’.
- You then check the results in the table ‘coefficients’: remove the variable with the
smallest absolute t-value (t) and a p-value (Sig.) larger then 0,05 from the model.
Then repeat the regression analysis without the variable.
o First test the interactions.
o De variabele waar je onderzoek naar doet blijft altijd in het model, ook al
is deze niet significant.
- Repeat this procedure until all remaining X-variables have a p-value at or below
5%.

Create dummy variables: transform  compute variable.
- Bijvoorbeeld D_EXP1 krijgt de codering instruction_method = 1, en D_EXP2 krijgt de
codering instruction_method = 2. D_EXP1 en D_EXP2 zijn de dummy variabelen.




Compare two regression models through an F-change test, to test the interaction:
analyse  regression  linear.
- Model 1 only contains main effects, model 2 also contain the interaction terms.
o These effects and interaction terms are places below ‘independent(s)’.
- Press ‘statistics’ and select ‘R squared change’. This is required to obtain the F-
change test.
- Check in the table ‘model summary’ the F-change value (F Change) and it’s p-
value (Sig. F change) in model 2. Check whether they are significant.

Case 1A
Create variables: transform  compute variable
- BMI = weight/(length**2).
- Overweigh = bmi > 25.

Inspect whether variabele increases of decreases across time: analyse  descriptive
statistics  descriptives.
- Below ‘variable(s)’ you enter the variable at different points of time. E.g.
‘bmi1998’, ‘bmi2008’, and ‘bmi2012’.

Change across time in the degree to which employees perform sports: analyse 
descriptive statistics  frequencies.
- Below ‘variable(s)’ you enter the variable at different points of time.
1

, Analyse whether there is a relation between two X’s and a continues Y: analyse 
regression  linear.
- Y = dependent, X’s = independent.

Some issues that could occur in the analysis:
- If it’s an observational study, confounders for the variable of central interest play
a role. You have to think about possible confounders and correct for them.
- Remember also that including categorical (i.e. nominal and ordinal) variables
with more than 2 levels as covariates into the regression analysis, has to be done
by first creating dummy variables. Testing for the significance of categorical
variables then has to be done using an F-change test.
- A good strategy is to start with the most complete model, and then perform a top-
down strategy for testing. The variable of central interest must always remain in
the model (even when it’s not significant).

SPSS practical 2
Crosstabulation; for instance, for calculating the incidence of becoming overweight in
2012 or having a normal weight again in 2012, taking 2008 as a departure year: analyse
 descriptive statistics  crosstabs.
- Row = overweight 2008, column = overweight 2012.
- Press ‘cells’ and select ‘row’ (incidences) below ‘percentages’; to specify that row
conditional percentages are calculated.

To describe the crude longitudinal association between a determinant and an outcome
that both are binary, also cross-tabulation can be used: analyse  descriptive statistics
 crosstabs.
- Association between sport and overweight’; row = sport2008, column =
overweight2012.
- Select ‘statistics’ and select ‘risk’; to obtain the OR (with a 95% confidence
interval) of being overweight of the sporting versus the non-sporting group.

Control for confounding variables can be done by performing a logistic regression
analysis. A method for selecting covariates is the top-down procedure: analyse 
regression  binary logistic.
- This is an automatic procedure and it can only be used when there are no
interactions in the analysis model!
- Block 1: Y = dependent, X = covariate/independent (first, only enter the variable
of central interest).
- Block 2: enter all remaining covariates that you consider relevant under
‘covariates’. The variables in block 2 will be removed by SPSS if they are not
significant (the variable from block 1 will always remain in the model).
o This occurs stepwise and is established by changing Method into:
Backward LR (instead of ‘Enter’).
- Categorical independent variables that involve more than two categories should
be defined as Categorical: press ‘categorical’ and select categorical covariates.
This implies that SPSS will automatically create 2 dummy variables for this
variable, where the highest value corresponds to the reference category.
- Check the results in the table ‘Variables in the equation’. In this model the
variable of central interest will be included and all covariates whose p-value ≤

2
€4,49
Accéder à l'intégralité du document:
Acheté par 8 étudiants

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les 5 avis
3 année de cela

5 année de cela

6 année de cela

6 année de cela

6 année de cela

4,0

5 revues

5
1
4
3
3
1
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
k_vdh Maastricht University
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
578
Membre depuis
10 année
Nombre de followers
305
Documents
10
Dernière vente
1 année de cela

3,6

108 revues

5
14
4
46
3
40
2
2
1
6

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions