Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Complete lecture notes Research Methods in Psychology (PY2RMP)

Note
-
Vendu
-
Pages
11
Publié le
24-12-2023
Écrit en
2021/2022

Complete, concise, and accurate lecture notes summarising the key content from Research Methods in Psychology

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Inconnu
Cours

Infos sur le Document

Publié le
24 décembre 2023
Nombre de pages
11
Écrit en
2021/2022
Type
Notes de cours
Professeur(s)
Dr dan jones
Contient
Toutes les classes

Sujets

Aperçu du contenu

29/09/2021 PY2RMP – Lecture 1 research process



Significance levels e.g., a rejection region (α)

If the test value falls into the rejection region, the null is rejected & the alternative is accepted

p is the probability of finding the observed data due to chance

Replication reduces Type I errors

Sufficiently powered experiments reduces Type II errors



Sample only approximates the population – different sample will generate a different approximation

Each sample is an estimate as two cannot be true- can resample the distribution multiple times



11/10/2021 PY2RMP – Lecture 2 simple linear regression



Regression analysis – examine effects of a response variable on one or more observed variables –
how much of the variation by the observed variable can be explained by the response variable?

Regression models used for prediction – estimate values of Y using information about X – want the
regression model to fit closest to the actual data as possible

If using X to predict Y, you’re regressing Y onto X (Y = predicted/IV & X = predicting/DV)



Simple linear regression = single explanatory & response variable

Multiple regression = multiple explanatory variables on a single response variable (can
look at independent effect of each variable while adjusting others)



Simple linear regression: the straight line equation as a model for the relationship between variables

2 models of data – can use mean or regression line – can examine the error
of both models (how much data they miss) to compare which fits better



Describing a straight line:

Intercept – value
of Y when X = 0

Regression coefficient – gradient of line to show direction/strength of relationship

, Error term – tells us how far off the model was (don’t have to include in equation)

Calculating regression model – method of least squares & line of best fit

Method of least squares – minimises errors in the model (sum of squared error - how far the model
is from each data point)

Line of best fit – determine if it is actually ‘best’ for data as it is affected by outliers



How much of the original error estimation is eliminated by using the regression model vs the mean

SS Total – SS Residual = SS Explained = R 2

R2 = % product of variation accounted for by other potential predictors & chance

R2 measures the success of the regression model & indicates how much better DV can be predicted
from information about the observed values rather than just the DV mean

√2 R 2 = Pearson’s R correlation


Total variability – SST - deviation of individual data from Grand mean

Regression sums of squares – SSR – deviation of mean on Y from regression on model

Residual sums of squares – SSR – deviation of data from regression model

Residuals > 3 = outliers



If the regression model is a better predictor than the mean, expect SS M
(improvements due to model) to be greater than SS R (error in model)

= Pearson’s Correlation Coefficient squared when there is 2 variables



= Mean squares (averages) is linked to the ANOVA test



ANOVA test – tells us if overall model is highly significant/better than chance to predict variables

18/10/2021 PY2RMP – Lecture 3 multiple regression



Linear regression – approximating data as a straight line when the data is directly linked (assume y is
dependent on x)

Multiple linear regression – predicting the value of an outcome based on several predictors while
controlling other variables

ANOVA – test of variance & measure of how significant the regression model is as a better fit
compared to just using the mean to predict the value of the outcome
€9,47
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
imaangill22

Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
imaangill22 University of Reading
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
12
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions