Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Notes de cours

Statistical physics _ fermi-dirac statistics

Note
-
Vendu
-
Pages
6
Publié le
15-12-2023
Écrit en
2023/2024

Unlock the Secrets of Statistical Physics: Your Ultimate Study Companion! Are you ready to elevate your understanding of statistical physics to new heights? Look no further! I'm thrilled to introduce my comprehensive and meticulously crafted set of Statistical Physics notes, designed to be your guide through the intricacies of this fascinating subject. Why Choose These Notes? In-Depth Coverage: Dive deep into the core principles of statistical physics, exploring concepts like statistical equilibrium, Boltzmann distribution, and more. Perfect for students, enthusiasts, and anyone seeking a solid grasp of the subject. Clarity and Conciseness: I've distilled complex theories into digestible nuggets of knowledge. Each section is presented with clarity, making it easy for you to follow along and grasp even the most challenging concepts. Practical Applications: Gain insights into real-world applications of statistical physics. From gas laws to phase transitions, these notes bridge the gap between theory and practical scenarios, giving you a holistic understanding of the subject. Visual Aids and Examples: Tired of dry, text-heavy notes? This collection features visual aids and examples that breathe life into abstract theories, making your learning experience not only effective but enjoyable. Perfect for Exam Preparation: Whether you're gearing up for exams or just want to reinforce your knowledge, these notes provide a strategic and organized approach to studying statistical physics. Ideal for Students and Professionals: Geared towards both students navigating coursework and professionals seeking to refresh their understanding, these notes cater to diverse learning needs. Limited Time Offer! For a short time, these notes are available at an exclusive price. Don't miss your chance to own a comprehensive guide that could be the key to acing your exams and mastering statistical physics! Secure Your Copy Today! Invest in your education and future success. Grab your copy now and embark on a journey to unravel the mysteries of statistical physics!

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Inconnu

Infos sur le Document

Publié le
15 décembre 2023
Nombre de pages
6
Écrit en
2023/2024
Type
Notes de cours
Professeur(s)
Pj
Contient
Toutes les classes

Sujets

Aperçu du contenu

DEPARTMENT OF PHYSICS
UNIVERSITY OF PERADENIYA
PH205 - Statistical and Thermal Physics
Note 10


Quantum Statistics I
So far we have discussed the classical statistics which is the Maxwell-Boltzmann statistics. In
classical statistics we considered distinguishable particles, hence interchange of any two particles
in a given partition will lead to a new arrangement within the system.

However considered particles in quantum statistics should be identical and indistinguishable.
Hence interchange of two particles will not give a new arrangement. There are two kinds of
quantum statistics namely Fermi-Dirac statistics and Bose-Einstein statistics. However at very
high temperatures and low densities quantum statistics reduce to classical statistics.

(i.) Fermi-Dirac Statistics
Particles considered in this statistics are obeying Pauli exclusion principle that means two
identical particles can not be in the same energy state. Particles obeying these conditions
are known as fermions which are the particles with half-integer spin.

(ii.) Bose-Einstein Statistics
Particles considered in this statistics are not obeying Pauli exclusion principle that means
more than one identical particles can be in the same energy level. These type of particles
are known as bosons which are the particles with integer spin.


• Fermi-Dirac Statistics

Particles in Fermi-Dirac statistics are identical, indistinguishable fermions that obey Pauli
exclusion principle. To compute the probability of a partition of a system of fermions, first we
have to redefine the intrinsic probability, gi . In quantum statistics gi is the number of states
corresponds to a given energy that is the degeneracy of the energy level. One can see that the
value gi gives the maximum number of fermions which can be accommodated in an energy level
without violating the exclusion principle.

Consider some energy level Ei with degeneracy gi . We are going to fill this energy level with
ni number of fermions. Since there are gi number of degenerate states,

⇒ we can place the first fermion in any of the gi states available that means we have gi
number of different ways of placing the first fermion in the energy level.

⇒ the second fermion can be placed in remaining (gi -1) states that means there are (gi -1)
number of different ways of placing the second fermion.

⇒ similarly the third fermion can be placed in (gi -2) number of different ways.



1

, Hence the total number of different ways of arranging the ni number of fermions among the
gi number of available states with energy Ei is given by
gi !
gi (gi − 1)(gi − 2).....................(gi − (ni − 1)) =
(gi − ni )!

So far we have taken into account only the exclusion principle. Since the fermions are indis-
tinguishable, it is not possible to recognize any difference if the fermions are reshuffled among
the states they are occupying in levels of energy Ei . Therefore the total number of different and
distinguishable arrangements of ni fermions among gi available states of energy Ei can be given
by
gi !
ni !(gi − ni )!

Consider some partition of a fermion system such that n1 , n2 , n3 , . . . . . . number of fermions
are among the energy levels E1 , E2 , E3 , . . . . . . having degeneracies g1 , g2 , g3 , . . . . . . respectively.
Total number of different and distinguishable ways of obtaining the partition can be then given
by
g1 ! g2 ! g3 ! Q gi !
P = × × ×...... = ........... (a)
n1 !(g1 − n1 )! n2 !(g2 − n2 )! n3 !(g3 − n3 )! i ni !(gi − ni )!

This is called probability of partition.


Fermi-Dirac Distribution Law (The most probable partition)

To find the most probable partition of a given system of fermions, we should maximize the
probability of the partition subjected to the conditions
P
ni = N = constant ............................. (i)
i
P
ni Ei = U = constant ............................. (ii)
i


Using Stirling approximation equation (a) can be simplified as
P
lnP = {gi lngi − ni lnni − (gi − ni )ln(gi − ni )}
i

Then the variation of lnP becomes
P
−dlnP = {lnni − ln(gi − ni )} dni
i
P P
By conditions (i) and (ii); dN = dni = 0 and dU = Ei dni = 0
i i

Selecting two parameters α and β such that −dlnP + α dN + β dU = 0
P
⇒ {lnni − ln(gi − ni ) + α + β Ei } dni = 0
i

This should valid for any ni hence lnni − ln(gi − ni ) + α + β Ei = 0
gi
⇒ ni = ......................... (b)
1 + e(α+βEi )
This represents the Fermi-Dirac distribution law.

The parameter β plays the same role as in Maxwell-Boltzmann statistics. Temperature of
the system of fermions in statistical equilibrium is defined by β = 1/kT .

2
€7,42
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
nuwanpeiris

Faites connaissance avec le vendeur

Seller avatar
nuwanpeiris University Of Florida
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
0
Membre depuis
2 année
Nombre de followers
0
Documents
20
Dernière vente
-

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions