Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Fysica I: Hoofdstuk 5: De Wetten van Newton, Wrijving, Cirkelvormige Beweging, Weerstandskrachten

Vendu
1
Pages
2
Publié le
14-01-2018
Écrit en
2017/2018

Fysica I: Hoofdstuk 5: De Wetten van Newton, Wrijving, Cirkelvormige Beweging, Weerstandskrachten C000057A - Universiteit Gent









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Publié le
14 janvier 2018
Nombre de pages
2
Écrit en
2017/2018
Type
Resume

Sujets

Aperçu du contenu

Hoofdstuk 5: De Wetten van Newton: Wrijving, Cirkelvormige
Beweging, Weerstandskrachten
Wrijving = Kracht die 2 voorwerpen op elkaar uitoefenen wanneer deze over
elkaar glijden of rollen.
- Kinetische wrijving
o Vlakken die t.o.v. elkaar schuiven.
o 𝐹𝑤𝑟 = 𝜇𝑘 ∙ 𝐹𝑁 met 𝜇𝑘 de kinetische wrijvingscoëfficiënt.
- Statische wrijving
o Contactkracht tussen voorwerpen in rust.
o Kracht is zo groot als nodig om het schuiven te verhinderen, tot een
maximum waarde.
o 𝐹𝑤𝑟 ≤ 𝜇𝑠 ∙ 𝐹𝑁 met 𝜇𝑠 de statische wrijvingscoëfficiënt.
Opm.: Meestal is 𝜇𝑠 > 𝜇𝑘 → Eenmaal statische wrijving overwonnen is, is er een
kleinere kracht nodig om het voorwerp in beweging te houden.
Eenparige cirkelvormige beweging (ECB) = Beweging in een cirkel met constante
straal en snelheid.
Opbouw v/d formule voor centripetale/radiale versnelling:
- Bij een ECB heb je verschillende snelheidsvectoren, elk rakend aan een
bepaald punt aan de cirkel → ∆𝑣⃗ = ⃗⃗⃗⃗⃗ 𝑣1 (door bv. kopstaartmethode kan
𝑣2 − ⃗⃗⃗⃗⃗
je zien dat ∆𝑣⃗ nagenoeg naar het middelpunt v/d cirkel is gericht, als we
het tijdsinterval tussen de twee snelheidsvectoren naar nul laten gaan
zodat ⃗⃗⃗⃗⃗//𝑣
𝑣2 ⃗⃗⃗⃗⃗1 , zal ∆𝑣⃗ loodrecht op die vectoren komen te staan).
- Je hebt ook verschillende plaatsvectoren, elk met het beginpunt in het
middelpunt v/d cirkel → ∆𝐿 ⃗⃗ = ⃗⃗⃗⃗
𝑟2 − ⃗⃗⃗⃗.
𝑟1
- Om nu de grootte van de centripetale
versnelling te bepalen, maken we gebruik
van gelijkvormige driehoeken (zie figuur):
o ⃗⃗⃗⃗ 𝑣1 en ⃗⃗⃗⃗
𝑟1 ⊥ ⃗⃗⃗⃗⃗ 𝑣2 → De hoek ∆𝜃
𝑟2 ⊥ ⃗⃗⃗⃗⃗
gedefinieerd tussen ⃗⃗⃗⃗ 𝑟1 en ⃗⃗⃗⃗
𝑟2 is ook de
hoek tussen ⃗⃗⃗⃗⃗
𝑣1 en ⃗⃗⃗⃗⃗.
𝑣2
o Omdat we kunnen aannemen dat de
grootte v/d snelheids- en
∆𝑣 ∆𝐿
plaatsvectoren niet verandert, kunnen we stellen dat = (geen
𝑣 𝑟
vectornotatie meer want we spreken enkel nog over de groottes).
𝑣
M.a.w. ∆𝑣 = 𝑟 ∆𝐿.
o Dit stoppen we in de definitie van versnelling om de centripetale
∆𝑣 𝑣 ∆𝐿 𝑣2
versnelling te bekomen: 𝑎𝑅 = lim = lim = .
∆𝑡→0 ∆𝑡 ∆𝑡→0 𝑟 ∆𝑡 𝑟




1

Reviews from verified buyers

Affichage de tous les avis
6 année de cela

4,0

1 revues

5
0
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
vastgoedstudent123 Odisee Hogeschool
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
36
Membre depuis
8 année
Nombre de followers
35
Documents
56
Dernière vente
10 mois de cela

3,8

28 revues

5
1
4
21
3
6
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions