Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Samenvatting - Inleiding adaptieve systemen (INFOB2IAS)

Vendu
3
Pages
40
Publié le
25-10-2023
Écrit en
2020/2021

Samenvatting van alle hoorcolleges van Inleding adaptieve systemen!

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
25 octobre 2023
Nombre de pages
40
Écrit en
2020/2021
Type
Resume

Sujets

Aperçu du contenu

Inleiding Adap eve Systemen
HC1 - Oneindigheid

The Computa onal Beauty of Nature
• Uitgangspunt: de natuur is een samenstelsel van kleine deeltjes die zelfstandig heel
gemakkelijk zijn geprogrammeerd maar samen heel complex en interessant gedrag
vertonen
• Simple rules make complex systems
• We moeten ze bekijken, niet simuleren -> typisch KI: a ijken wat je kunt gebruiken
en de rest laten zoals het is
• Opzet van het college: elke keer een ander onderwerp

Oneindigheid
• Er zijn oneindig veel verschillende oneindigheden. “Aleph nul/één/twee/…/omega”
• Aleph zijn kardinale getallen: geven groo e van verzamelingen aan
• Alleen maar a elbare verzamelingen in deze cursus
• Een verzameling heet a elbaar als deze op een rij kan worden gezet
• Typische a elbare verzameling: N (natuurlijke getallen), Q (breuken)
• A elbare verzamelingen zijn alomtegenwoordig in de wiskunde en exclusief
vertegenwoordigd in de informa ca
• Discreet (alles wat a elbaar is) vs con nu (alles wat gelijkma g is met R)
• Maakt het mogelijk elementen 1 voor 1 te bekijken/bewerken
• A elbare rij is van a elbare verzameling: a elbare vereniging (U) is ook a elbaar
• Een verzameling A heet a elbaar als er een injec e f: A -> N bestaat. Elk element A
moet genummerd worden en dat nummer moet uniek zijn. Niet alle nummers uit N
hoeven worden gebruikt.
• Belangrijke voorbeelden van over-a elbare verzamelingen zijn: de reeële getallen R,
alle deelverzamelingen van N, de verzameling van alle eindige en oneindige bitstrings

Aleph
• Aleph 0 is de kleinste oneindigheid, namelijk hoeveel
natuurlijke getallen, even nummers, oneven nummers,
ra onele nummers er zijn.
• Labeling things in order is di erent than coun ng them ->
• Line 0 does not contribute to the number of lines, but it
does when labeling the order the lines
• The rst ordinal number is omega: the next label you’ll
need a er using up the in nite collec on of every single
coun ng number rst
• A er omega comes omega + 1, etc. It is not bigger than omega, it just comes a er.
• The order type of Aleph 0 is omega, as long as it is well ordered.

, • But what is then bigger than aleph 0? The power set of aleph 0. Set of all the
di erent subsets. Aka 2 to the power of aleph 0
• Aleph 1:




• Dat gaat zo door, aleph 2 is omega 2 etc….

Diagonaal-argument
• Bewering [0,1] is niet a elbaar (= niet op een rij te ze en)
• Over-a elbaar: ontkenning van a elbaarheid
• Gelijkmach gheid van twee verzamelingen: als een bi-jec e tussen deze twee
bestaat -> “even groot”
• (0,1) en R zijn gelijkmach g -> ronde haken betekenen dat 0 en 1 er niet bij horen.
• h ps://libraryo abel.info/ laat een oneindige bibliotheek zien met 3200 characters
• Er bestaan ook machtsverzamelingen: 2^A.

Berekenbaarheid
• Gödel nummering: het redeneren van teksten/boeken/programma’s kan je
reduceren over redeneren over getallen (niet per se heel e cient)
• Maakt gebruik van het feit van de wiskunde: priem-ontbinding is uniek (hoofdstelling
van de rekenkunde)
• Voorbeelden: 12 = 4 x 3 = 2^2 x 3^1 = (2, 1), 20 = 4 X 5 = 2^2 X 3^0 X 5^1 = (2, 0, 1)
• ASCII tabel (char <-> 7 bits): alle characters krijgen een uniek getal
• Met Gödel nummering kunnen we dus vragen over strings, i.h.b. computer
programma’s, vertaald worden naar vragen over getallen. Het is een manier om een
berekenbare bi-jec e te de niëren tussen N en Strings
• Priem-ontbinding is uniek: dus elk natuurlijk getal correspondeert met ten hoogste 1
string

• Church-Turing
• Alle programmeertalen zijn even krach g (bijv. in het geval van invoer en uitvoer).
• Het is niet zo dat alle programmeertalen even handig ( jd en geheugen) & sterk zijn
in toepassingen (bijv. interac viteit).
• Turing-volledigheid: als een no e van berekening B (bijv C#) minstens even krach g is
als andere berekening, is B Turing-volledig. Minstens even krach g -> niet krach ger.
• De register-machine:
• Bewering: de register-machine is even sterk als Java: beiden kanten op bewijzen.
• Je schrij Macro’s op: variabelen
• Basis van berekening-concepten; Turing-machine.

,HC2 - Beslisbaarheid, berekenbaarheid

De Turing machine is even sterk als bv Java. Je kan de Turing machine simuleren in Java. Ook
andersom. Idee: kom met een rekenvoorschri die berekeningen in een iets minder primi ef
berekeningsmodel, waarvan we al weren dat de Turing compleet is, omzet naar
berekeningen op een Turing machine.

These van Church-Turing
Aanname: wat wij intuï ef onder berekenbaarheid verstaan, wordt vertegenwoordigd door
de klasse van (proefondervindelijk even sterke) berekening-mechanismen op N^N.
- Deze klasse is heel groot. Bevat alle Turing-equivalente berekening-mechanismen
- Dit is een aanname/afspraak. Niet een stelling.

Berekenbaarheid
- Als je problemen hebt zijn er verschillende soorten: vraag-typen
- Vaag of subjec ef (wat is het lekkerst)
- Voldoende precies geformuleerd: kortste pad
- Meest belangrijke vraagstuk
- Welke vragen zijn wel en niet met de computer te beantwoorden?
- Bestaan er vraagstukken die computers principieel (aannemende dat alle
programmeertalen die we nu kennen samen de no e berekenbaarheid
representeren)niet kunnen oplossen? - Ja
- We houden ons bezig met de berekenbaarheidstheorie




Onbeslisbaarheid
- Carcassonne puzzel
- Er bestaat geen algoritme, er kan ook geen algoritme bestaan, en zal ook nooit zo zijn dat
voor alle niet-royeerbare Carcassonne-tegelsets kan bepalen of deze het vlak kunnen
vullen
- Turing maakte kennis met het Entscheidungsprolem: niet alle problemen kunnen
mechanisch worden opgelost -> Turing-machine (WW2)

Het stop-probleem is onbeslisbaar

, Stelling: Zij J een programmeertaal. Als J voldoende expressie is (Turing-compleet), dan kan
er geen programma h (element van) J bestaan dat voor elke programma/input-combina e
(j,i) (element van) J x I kan uitmaken of j met input i stopt.
- Merk op: h is 2-plaatsig en de j’s zijn 1-plaatsig (h moet dus 2 teruggeven en j 1)
- Bewijs (van het ongerijmde). Stel h bestaat wel. Dus: h(j, i) = 1 j(i) stopt.
- Mbv h/2 is makkelijk een programma te schrijven voor de onberekenbare q/1: 1(i): if
h(i, i) = 1, then loop forever.
- Tegenspraak: dus een hal ng func e h/2 kan niet bestaan.

Het invoer loze stop-probleem
Problemen al jd hetzelfde aanpakken: reduc e van het probleem dat je onbeslisbaar wil
bewijzen. Je neemt aan dat het probleem wel beslisbaar is, en bewijs de tegenspraak.




H/1 betekent 1 input




Begrippen in berekenbaarheidstheorie:
- Berekenbaar computable (func e)
- Opsombaar enumerable (verzameling)
- Complementair opsombaar
- Beslisbaar decidable (verzameling)
- Semi-beslisbaar

Een (mogelijk par ële) func e f: N -> N heet berekenbaar als er een computerprogramma
bestaat dat f kan berekenen voor precies alle getallen waarvoor f gede nieerd is.

Een verzameling getallen heet opsombaar/enumereerbaar als er een computerprogramma
bestaat dat alle elementen van X (vroeg of laat) afdrukt.
€10,19
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Reviews from verified buyers

Affichage de tous les avis
1 année de cela

5,0

1 revues

5
1
4
0
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
diede26 Universiteit Utrecht
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
26
Membre depuis
2 année
Nombre de followers
18
Documents
11
Dernière vente
3 mois de cela

4,0

6 revues

5
4
4
0
3
1
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions