Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Celcultuur en Immunochemie compleet

Note
-
Vendu
-
Pages
53
Publié le
18-10-2023
Écrit en
2022/2023

Een mooie overzichtelijke samenvatting voor het vak Celcultuur en Immunochemie, hoofdstuk 1-12 is volledig samengevat. in de samenvatting zitten ook tekeningen die in de hoorcolleges behandeld zijn.












Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Infos sur le Document

Livre entier ?
Oui
Publié le
18 octobre 2023
Nombre de pages
53
Écrit en
2022/2023
Type
Resume

Aperçu du contenu

Samenvatting Celcultuur en
Immunochemie

Hoofdstuk I : Inleiding


1.1 Geschiedenis
Eerste dierlijke celculturen dateren van 1907 (Ross Harrison), maar doorbraak
rond 1950. Drie belangrijke ontdekkingen gedaan:

1. Antibiotica (1e penicilline ): weefsel of cellen steriel houden, besmetting
voorkomen bij celkweek
2. Trypsine (eiwit afbrekend enzym): (het splitst alleen peptiden waarvan de
carboxylgroep afkomstig is van de basische AZ lysine en arginine en wordt
daarom i/h laboratorium toegepast bij structureel onderzoek van eiwitten)
om cellen los te maken van cultuurflessen
3. Chemisch gedefinieerde cultuurmedia = (water + zuurstof + suikers +
vetzuren + glucose + vitamines) zijn de voedingsstoffen


Biomedisch onderzoek:
1. Polio virus: Kan gekweekt worden in embryonale cellen. Mens kan door
formaline geïnactiveerd virulent poliovirus tegen polio gevaccineerd
worden. Ontstaan vaccin met levend verzwakt virus.

2. HELA cellen: Overleed aan baarmoederhalskanker. Haar cellen gebruikt
voor kankeronderzoek.

3. Hybridoma technologie: Laat toe cellen continu monoklonale antilichamen
(specifiek tegen 1 antigen) te produceren. Een hybridoma is een cel
ontstaan door fusie v/e B-lymfocyt met een kankercel (myeloma).
vb: Antigen inspuiten (virus, eiwit)  B-cellen isoleren die een antilichaam
hebben  B-cellen met een ander antilichaam past niet op het ingespoten
antigen  B-cellen laten samensmelten met een tumor cel (continum cel,
blijft altijd groeien) PEG toevoegen (poly ethyleen glycol), zorgt voor een
betere samensmelting)  hybridoma’s (b-cellen die eeuwig groeien) 
bindende b-cellen kunnen behouden en zo kan je de goede hybridoma’s in
celcultuur brengen

4. Cel en weefseltechnologie: Verkrijgen van bio-implantanten om slecht
werkende organen of weefsels te ondersteunen of vervangen. Cellen
kunnen aangepast zijn zodat ze een stof geregeld afgeven (bv. insuline)
die het lichaam niet meer afgeeft (zoals diabetes).




1

,1.2 Voordelen cel- en weefselculturen:
1. Controle van de omgeving: Controle van fysicochemische en fysiologische
parameters (pH 7.2, osmotische druk: 0,9% natriumoplossing, O 2: 21%,
CO2: 0,03%. Maar ook voedingsstoffen (serum)

2. Goede karakterisatie en homogeniteit: Uitzondering van orgaanculturen
zijn culturen redelijk homogeen. Heterogene primaire cultuur neemt toe in
homogeniteit door subcultivatie (bij elke transfer worden de cellen
gemengd en o.i.d. cultuuromstandigheden vindt er een selectie plaats van
1 celtype). Aanmaak van een cryostok is nodig!

3. Kostprijs: Goedkoper dan proefdierexperimenten. Miniaturisatie en
afwezigheid van excretiemechanismen zorgen dat slechts kleine
hoeveelheden monster en reagentia nodig zijn. Aankoop en onderhoud van
proefdieren is duur + ethiek.

4. In vitro modellering van in vivo omstandigheden




2

,1.3




Beperkingen van weefselculturen
1. Expertise: Uitvoering onder strikt aseptische (steriele) omstandigheden,
want dierlijke cellen groeien trager dan bacteriën en schimmels.

2. Hoeveelheid: Op laboschaal 10^9 cellen gekweekt, terwijl 1 menselijke cel
10^-9 gram weegt. Dus maximaal 1 gramhoeveelheden verkregen
worden. Voor meer kweek is industrie nodig met de nodige kosten en
problemen.

3. Instabiliteit: Normale cellen hebben beperkte levensduur + verlies
eigenschappen tot ze sterven (senescentie). Continue cellijnen bezitten
aneuploïde aantal chromosomen.

4. Cultuuromgeving versus in vivo: Cel uit 3D structuur (in vivo) gehaald en
gekweekt in 2D substraat (in vitro). Specifieke interacties verdwenen.
Cellen zijn bewegelijk met snelle deling. 1 of 2 celtypes zijn verdwenen.
Verbindingen van zenuwstelsel en endocriene organen niet aanwezig.




3

, Energiemetabolisme meer constant en gebaseerd op glycolyse (minder
voor citroenzuurcyclus).




4
€10,99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
marnixvanliere1

Faites connaissance avec le vendeur

Seller avatar
marnixvanliere1 Universiteit Antwerpen
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
3
Membre depuis
2 année
Nombre de followers
1
Documents
4
Dernière vente
1 année de cela

0,0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions