Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Examen

MAT2613 EXAM PACK 2023

Note
-
Vendu
-
Pages
107
Grade
A+
Publié le
06-09-2023
Écrit en
2023/2024

latest questions and elaborate answers

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
6 septembre 2023
Nombre de pages
107
Écrit en
2023/2024
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

MAT2613 EXAM PACK 2023


QUESTIONS
AND ANSWERS



For assignment help or inquiries
Email:
WhatsApp: +254704997747

,MAT2613
EXAM PACK




Revision PACK
Questions. Answers

, 3



I OCTOBER/NOVEMBER )0/7EXAMINATION PAPER AND MEMORANDUM I

QUESTION l

1.1 Use a proof by contradiction to prove that the following statement is true.

2n ;::: 2n for all positive integers n.

[Hint: You may assume the well ordering axiom: Every non-empty set of positive integers has a least
Open Rubric




~~] 00

SOLUTION
Contradiction: There exist at least one positive integer m such that 2m < 2m.
Assumption false for m =
1 and m =
2. The statement must then be: There exist at least one positive integer
m > 2 such that 2m <2m.
Let M = (m lm > 2, m EN, 2m < 2m}. This set M bas a least element by the well·ordening axiom.
Let mo be this element. Then mo > 2 and 2mo < 2m 0 (1)
However, mo - 1 < mo and mo- 1 ¢ M, so 2<mo-l) ;::: 2 (mo- 1) (2)
and so from (1) and (2) we have since (2) is 2mo ;::: 4m0 - 4 that 4m0 - 4 ~ 2mo < 2m0 , i.e 2m0 < 4 or m0 < 2
which is a contradiction.

1.2 Give the contrapositive of the following statement:
00

If L, Or is convergent then (an) is a null sequence. (2)
rei


[10]
SOLUTION
00
If (an) is not a null sequence then L:ar is divergent.
r•l



QUESTION%

Let (an) be the sequence of real numbers defined by a 1 = I and an+l = ,JiCi;,for n EN.
Show that (an) converges and find the limit.
[Hint: Show that 1 ~an < an+l < 2 for all n EN using mathematical induction.] f81

SOLUTION
a1 = 1 and On+1 = -J24,'if n .
Following the hint we have to prove that 1 < an+2 < 2 'if n. (*)
~ an
For n = 1 we have a 1 = 1 ami a 2 = ,J2 thus (*) is true for n = I.
Suppose(*) is true for n = k, i.e 1 ~ at < ak+l < 2 (**)
Then we have from(**) that 2 ~ 2ak < 2aA:+1 < 4 so that ,J2 ~ ,J2iii < ~ < 2.

t
Open Rubric

, 4


But

A - ak+l and J2ak+l = ak+2

so 1 < .J2 ~ ak+l < ak+2 < 2 and the equation (**)is true.

We thus have an increasing sequence which is bounded above by 2.

Suppose
lim an
n-too
= L. Then also lim an+I
11--tOO
= L
We have
lim an+ 1 lim .J2ci:, = Jlim 2an
= n-too
11--too n-too




L = .fi-JI i.e -Jl = v'2 or L =2.
QUESTION3
Prove from first principles that the sequence (an) with

2n 2 +5
a1 = 0, an = ., when n ?: 2
n-- 1
converges. (7)
SOLUTION
2n 2 + 5 2 + 2..
.
We suspect that lrm an
n-too
= .
lun
11--tOO n 2 - 1
= lim ~ =2
n-too ( - ~
'-"
/



Let c > 0 be given. For n :;::: 2 we have




Since

> n when n :;::: 2 we have


lan- 21
7 7/
- -- < - for n > 2
n -l-n
2 -
Clearly
7 7
-<e~n>
n e
By the Archimedean principle there exists ;:: N with N > ~.
f:

For such an N e N we have
• 7 7
n 2: N => n > - => lan - 21 < - < c
e n
€3,24
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
kymih University of South Africa (Unisa)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
72
Membre depuis
2 année
Nombre de followers
56
Documents
240
Dernière vente
3 mois de cela

4,0

6 revues

5
4
4
0
3
1
2
0
1
1

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions